Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tissue potassium

Potassium [7440-09-7] K, is the third, element ia the aLkaU metal series. The name designation for the element is derived from potash, a potassium mineral the symbol from the German name kalium, which comes from the Arabic qili, a plant. The ashes of these plants al qili) were the historical source of potash for preparing fertilisers (qv) or gun powder. Potassium ions, essential to plants and animals, play a key role in carbohydrate metaboHsm in plants. In animals, potassium ions promote glycolysis, Hpolysis, tissue respiration, and the synthesis of proteins (qv) and acetylcholine. Potassium ions are also beheved to function in regulating blood pressure. [Pg.515]

Potassium is required for enzyme activity in a few special cases, the most widely studied example of which is the enzyme pymvate kinase. In plants it is required for protein and starch synthesis. Potassium is also involved in water and nutrient transport within and into the plant, and has a role in photosynthesis. Although sodium and potassium are similar in their inorganic chemical behavior, these ions are different in their physiological activities. In fact, their functions are often mutually antagonistic. For example, increases both the respiration rate in muscle tissue and the rate of protein synthesis, whereas inhibits both processes (42). [Pg.536]

Functional Nail-Care Products. Cuticle removers are solutions of dilute alkaHes that faciHtate removal, or at least softeniag, of the cuticle. Formulations containing as much as 5% potassium hydroxide have been reported. Such preparations may contain about 10% glycerine to reduce dryiag, and thickeners, such as clays, to reduce mnoff Lipids and other conditioners are iacluded to reduce damage to tissues other than the cuticle. [Pg.300]

Potassium hydroxide (KOH) (caustic potash) White deliquescent solid. Sticks, flakes, pellets. Dissolution in water is highly exothermic. Strongly basic. Severe hazard to skin tissue... [Pg.28]

The application of biosolids also increases the nutritional value of blue grama. Tissue levels of nitrogen, phosphorus, potassium, and crude protein increased to recommended tissue concentrations with biosolids treatments. Trace metals in blue grama grass did not increase during the study, thereby eliminating concerns that toxic amounts of these elements could be transferred to grazing animals. [Pg.581]

Aldosterone, the most potent of the mineralocorticoids (Figure 25.43), is involved in the regulation of sodium and potassium balances in tissues. Aldosterone increases the kidney s capacity to absorb Na, Cl, and HgO from the glomerular filtrate in the kidney tubules. [Pg.849]

The nurse inspects the IV needle site every 30 minutes for signs of extravasation. Potassium is irritating to the tissues. If extravasation occurs, the nurse discontinues the IV immediately and notifies the primary health care provider. The acutely ill patient and the patient with severe hypokalemia will require monitoring of the blood pressure and pulse rate every 15 to 30 minutes during the time of the IV infusion. The nurse measures the intake and output every 8 hours. The infusion rate is slowed to keep the vein open, and the primary health care provider is notified if an irregular pulse is noted. [Pg.642]

Tissue Potassium concentration (mol m ) Cytoplasm Vacuole Reference... [Pg.100]

The toxic mechanism of action of these various jellyfish venoms is complex. The cardiotoxic reaction seems to focus on calcium transport and is blocked by the prior or post administration of therapeutic doses of verapamil (7J). In neuronal tissue, Chrysaora venom induces large cationic selective channels which open and close spontaneously. These channels are permeable to Na , Li, K, and Cs but not and the channels are present in spite of the treatment with sodium and potassium inhibitors such as tetrodotoxin and tetraethylammonium (14). [Pg.335]

Sodium hydroxide (NaOH) (caustic soda) Potassium hydroxide (KOH) (caustic potash) Calcium hydroxide (Ca(OH)2) (slaked lime) Ammonium hydroxide (NH4OH) (aqueous ammonia solution) White deliquescent solid. Sticks, flakes, pellets. Dissolution in water is highly exothermic. Strongly basic. Severe hazard to skin tissue White deliquescent solid. Sticks, flakes, pellets. Dissolution In water is highly exothermic. Strongly basic. Severe hazard to skin tissue White powder soluble in water yielding lime water. Alkaline Weakly alkaline. Emits ammonia gas. Severe eye irritant... [Pg.28]

Silicon w is first isolated and described as an element in 1824 by Jdns Jacob Berzelius, a Swedish chemist. Silicon does not occur uncombined in nature, i.e.- as an element. It is found in practically aU rocks as well as in sand, clays, and soils, combined either with oxygen as silica (Si02= silicon dioxide) or with oxygen plus other elements (e.g., aliuninum, mcignesium, calcium, sodium, potassium, or iron) as silicates. Its compounds also occur in all natural waters, in the atmosphere (as siliceous dust), in many plants, and in the skeletons, tissues, and body fluids of some animals. [Pg.309]

In a sensitive and specific colorimetric method 1,1,1-trichloro-2,2-bis(p-methoxyphenyl)-ethane is extracted from plant or animal tissue, using benzene or petroleum ether as the solvent. The solvent is evaporated at room temperature by a current of air and the residue dehydroha log ena ted with 2% alcoholic potassium hydroxide. By petroleum ether extraction the resulting 1,1-dichloro-2,2-bis(p-methoxyphenyl)-ethylene is removed from the reaction mixture. After the solvent is removed by air evaporation the dehydroha log ena ted methoxychlor is isolated from the nonsaponifiable portion of the fats and waxes by dissolving the residue in hot acetone, chilling, and filtering. After the acetone is removed by air evaporation, the residue is treated with 85% sulfuric acid. This produces a red solution with an absorption maximum at 555 m/z, the intensity of which can be read on a colorimeter and is a function of the methoxychlor concentration. Beer s law is obeyed over the range of 1 to 50 micrograms. [Pg.260]

Fig. 6.21 Joint application of patch-clamp and voltage-clamp methods to the study of a single potassium channel present in the membrane of a spinal-cord neuron cultivated in the tissue culture. The values indicated before each curve are potential differences imposed on the membrane. The ion channel is either closed (C) or open (O). (A simplified drawing according to B. Hille)... Fig. 6.21 Joint application of patch-clamp and voltage-clamp methods to the study of a single potassium channel present in the membrane of a spinal-cord neuron cultivated in the tissue culture. The values indicated before each curve are potential differences imposed on the membrane. The ion channel is either closed (C) or open (O). (A simplified drawing according to B. Hille)...
Some of the most revealing studies of partial agonism (including Stephenson s seminal work) have been done with tissues in which G-proteins (see Chapters 2 and 7) provide the link between receptor activation and initiation of the response. In contrast to the situation with fast receptors with intrinsic ion channels (see above), it is not yet possible to observe the activity of individual G-protein-coupled receptors (with the potential exception of some that are linked to potassium channels) however, enough is known to show that the mechanisms are complex. The interpretation of differences in efficacy for agonists acting at such receptors is correspondingly less certain. [Pg.31]

As metabolism increases, oxygen consumption and carbon dioxide production are enhanced. The concentration of hydrogen ions is also enhanced as more carbonic acid (formed from carbon dioxide) and lactic acid are produced by the working tissue. Furthermore, the concentration of potassium ions in the interstitial fluid is increased. The rate of potassium release from the cells due to repeated action potentials exceeds the rate of potassium... [Pg.217]

Each of these chemical changes promotes vasodilation of arterioles. In addition, the increase in tissue temperature associated with increased metabolism further contributes to metabolic vasodilation. The resulting increase in local blood flow restores these substances to their resting values. More oxygen is delivered and excess carbon dioxide, hydrogen and potassium ions, and adenosine are removed. [Pg.218]

FRET-based nanosensors have been successfully used to monitor steady state levels of metabolites, nutrients, and ions in mammalian cells [74, 87], Recently FRET-based glucose, sucrose, and amino acid nanosensors have been developed to study the metabolism of glucose, sucrose, and amino acid uptake and metabolism in plant cells [80,89, 91]. The enormous potential of these nanosensors will be crucial for understanding ion (e.g., calcium), metabolite (e.g., sugars), hormone (e.g., auxins, gibberellins etc.), and nutrient (e.g., nitrogen, potassium, phosphorus) requirements and homeostasis in living plant tissues. [Pg.446]

In order to develop a more efficient, and practical protocol of DNA extraction based on heating procedure, we performed a serial study to test various chemicals in a combination with heating, in order to identify an optimal protocol. As a result, we developed a simple protocol of boiling FFPE tissue sections in a solution of sodium hydroxide (NaOH) or potassium hydroxide... [Pg.49]


See other pages where Tissue potassium is mentioned: [Pg.150]    [Pg.275]    [Pg.473]    [Pg.280]    [Pg.185]    [Pg.359]    [Pg.2135]    [Pg.301]    [Pg.651]    [Pg.76]    [Pg.140]    [Pg.537]    [Pg.909]    [Pg.370]    [Pg.188]    [Pg.402]    [Pg.167]    [Pg.296]    [Pg.67]    [Pg.76]    [Pg.412]    [Pg.489]    [Pg.1006]    [Pg.60]    [Pg.466]    [Pg.174]    [Pg.418]    [Pg.78]    [Pg.172]    [Pg.495]    [Pg.270]    [Pg.199]    [Pg.87]   
See also in sourсe #XX -- [ Pg.528 , Pg.534 ]




SEARCH



Cardiac tissue sodium potassium-adenosine

Cardiac tissue sodium potassium-adenosine triphosphatase

Potassium channels cardiac tissue

Potassium ion in tissues

© 2024 chempedia.info