Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Positive product control preparation

The conceptually simplest approach towards controlling systems by laser field is by teaching the field [188. 191. 192 and 193]. Typically, tire field is experimentally prepared as, for example, a sum of Gaussian pulses with variable height and positions. Each experiment gives an outcome which can be quantified. Consider, for example, an A + BC reaction where the possible products are AB + C and AC + B if the AB + C product is preferred one would seek to optimize the branching ratio... [Pg.2321]

Because the position of electrophilic attack on an aromatic nng is controlled by the direct ing effects of substituents already present the preparation of disubstituted aromatic com pounds requires that careful thought be given to the order of introduction of the two groups Compare the independent preparations of m bromoacetophenone and p bromoace tophenone from benzene Both syntheses require a Friedel-Crafts acylation step and a bromination step but the major product is determined by the order m which the two steps are carried out When the meta directing acetyl group is introduced first the final product IS m bromoacetophenone... [Pg.504]

Nitration differs from halogenation since here the strongly electron-withdrawing effects of the nitro substituents first introduced influence the reactivity and the positions of further introduced substituents. Therefore, it is possible to prepare under carefully controlled reaction conditions different substitution products.100 103 The preparation of the tetrasubstituted product cannot be achieved since the deactivating effects of three nitro groups are too strong.104... [Pg.604]

Studies performed on CdS [282, 283] have revealed the importance of the microstructure, i.e., crystal structure, crystallite size, and geometrical surface area, in both the control of band structure and the concentration and mobility of charges, in relation to the photocatalytic performance of the photocatalyst. It has been shown also that the solubility product of CdS colloids prepared from acetate buffer aqueous solutions of suitable precursors increases from 7.2x 10 for large particles to about 10 for small (< 2.5 nm) particle colloids, this increase invoking a positive shift on the cathodic corrosion potential [284]. [Pg.277]

Ono and Kamimura have found a very simple method for the stereo-control of the Michael addition of thiols, selenols, or alcohols. The Michael addition of thiolate anions to nitroalkenes followed by protonation at -78 °C gives anti-(J-nitro sulfides (Eq. 4.8).11 This procedure can be extended to the preparation of a/jti-(3-nitro selenides (Eq. 4.9)12 and a/jti-(3-nitro ethers (Eq. 4.10).13 The addition products of benzyl alcohol are converted into P-amino alcohols with the retention of the configuration, which is a useful method for anri-P-amino alcohols. This is an alternative method of stereoselective nitro-aldol reactions (Section 3.3). The anti selectivity of these reactions is explained on the basis of stereoselective protonation to nitronate anion intermediates. The high stereoselectivity requires heteroatom substituents on the P-position of the nitro group. The computational calculation exhibits that the heteroatom covers one site of the plane of the nitronate anion.14... [Pg.73]

Oxides play many roles in modem electronic technology from insulators which can be used as capacitors, such as the perovskite BaTiOs, to the superconductors, of which the prototype was also a perovskite, Lao.sSro CutT A, where the value of x is a function of the temperature cycle and oxygen pressure which were used in the preparation of the material. Clearly the chemical difference between these two materials is that the capacitor production does not require oxygen partial pressure control as is the case in the superconductor. Intermediate between these extremes of electrical conduction are many semiconducting materials which are used as magnetic ferrites or fuel cell electrodes. The electrical properties of the semiconductors depend on the presence of transition metal ions which can be in two valence states, and the conduction mechanism involves the transfer of electrons or positive holes from one ion to another of the same species. The production problem associated with this behaviour arises from the fact that the relative concentration of each valence state depends on both the temperature and the oxygen partial pressure of the atmosphere. [Pg.236]

The orientation of the addition of HC1 to a variety of halogen-substituted 1,3-butadienes has been extensively studied under preparative conditions39-43. The results are given in Table 3. No significant polymerization was observed and the products were in all cases those resulting from a 1 1 addition process. The regiochemistry control by the position of the chlorine atom was quite versatile. A Cl at C(l) favored formation of the 4,3-adduct whereas with Cl on C(2) the 1,4-adduct predominated. The competition between substitution by chlorine and methyl attenuated but did not markedly modify this orientation. However, all these reactions were quite slow and took from 5 to 10 h, even in the presence of a catalyst (mostly cuprous chloride). Therefore, product... [Pg.554]

Serine hydroxymethyl transferase catalyzes the decarboxylation reaction of a-amino-a-methylmalonic acid to give (J )-a-aminopropionic acid with retention of configuration [1]. The reaction of methylmalonyl-CoA catalyzed by malonyl-coenzyme A decarboxylase also proceeds with perfect retention of configuration, but the notation of the absolute configuration is reversed in accordance with the CIP-priority rule [2]. Of course, water is a good proton source and, if it comes in contact with these reactants, the product of decarboxylation should be a one-to-one mixture of the two enantiomers. Thus, the stereoselectivity of the reaction indicates that the reaction environment is highly hydro-phobic, so that no free water molecule attacks the intermediate. Even if some water molecules are present in the active site of the enzyme, they are entirely under the control of the enzyme. If this type of reaction can be realized using synthetic substrates, a new method will be developed for the preparation of optically active carboxylic acids that have a chiral center at the a-position. [Pg.3]

The catalyst preparation area is positioned between the two polyethylene production units with 60 feet separating each one. The aluminum alkyls storage canopy and isopentane horizontal storage tank are located at a remote area at an approximate distance of 250 feet away from the production and utility areas. The isopentane is transported to the catalyst preparation area through a 3-inch pipeline. A remote actuated isolation valve on this supply line that fails closed is located at the isopentane storage tank. This control valve and an associated isopentane feed pump are managed by the operator in the control room. [Pg.369]

Iminium ion-vinylsilane cyclizations closely related to the one described here have been used to prepare indolizidine alkaloids of the pumiliotoxin A and elaeokanine families, indole alkaloids, amaryllidaceae alkaloids, and the antibiotic (+)-streptazolin. The ability of the silicon substituent to control the position, and in some cases stereochemistry, of the unsaturation in the product heterocycle was a key feature of each of these syntheses. [Pg.98]


See other pages where Positive product control preparation is mentioned: [Pg.160]    [Pg.495]    [Pg.63]    [Pg.270]    [Pg.296]    [Pg.197]    [Pg.17]    [Pg.236]    [Pg.202]    [Pg.116]    [Pg.195]    [Pg.28]    [Pg.296]    [Pg.423]    [Pg.340]    [Pg.137]    [Pg.822]    [Pg.239]    [Pg.241]    [Pg.61]    [Pg.174]    [Pg.508]    [Pg.111]    [Pg.335]    [Pg.63]    [Pg.245]    [Pg.596]    [Pg.1143]    [Pg.235]    [Pg.838]    [Pg.969]    [Pg.103]    [Pg.455]    [Pg.464]    [Pg.99]    [Pg.86]    [Pg.222]    [Pg.415]    [Pg.335]    [Pg.179]   
See also in sourсe #XX -- [ Pg.3060 ]




SEARCH



Position control

Position controller

Positive product control

Product control

Product controlling

Product preparation

Production controls

Production preparation

© 2024 chempedia.info