Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane determination

To conclude, the common physico-chemical characteristics of oligo-polyols for polyurethanes determined by standard analytical methods are hydroxyl number, hydroxyl percentage, primary hydroxyl content, molecular weight, equivalent weight, molecular weight distribution, viscosity, specific gravity, acidity and colour (See Chapters 3.1-3.11). [Pg.48]

ISO 14900, Plastics - Polyols for use in the Production of Polyurethane -Determination of Hydroxyl Number, 2001. [Pg.51]

The physical properties of polyurethanes are derived from their molecular stmcture and deterrnined by the choice of building blocks as weU as the supramolecular stmctures caused by atomic interaction between chains. The abiHty to crystalline, the flexibiHty of the chains, and spacing of polar groups are of considerable importance, especially in linear thermoplastic materials. In rigid cross-linked systems, eg, polyurethane foams, other factors such as density determine the final properties. [Pg.343]

USING OF THE MICELLAR MEDIUM, BASIC DYES AND PRECONCENTRATION ON THE POLYURETHANE FOAMS FOR THE DETERMINATION OF PHOSPHORUS AND ARSENIC... [Pg.285]

The test-techniques of hydrargyrum (II) and zincum (II) ions determination in aqueous solutions with the use of congo red and brilliant green adsorbed on polyurethane foam accordingly are desighed on the basis of received data for organic reagents adsorption on it s. [Pg.330]

For materials of equivalent density water-blown polyurethanes and the hydrocarbon-blown polystyrene foams have similar thermal conductivities. This is because the controlling factor determining the conductivity is the nature of the gas present in the cavities. In both of the above cases air, to all intents and purposes, normally replaces any residual blowing gas either during manufacture or soon after. Polyurethane foams produced using fluorocarbons have a lower thermal conductivity (0.12-0.15 Btu in fr h °F ) (0.017-0.022 W/mK) because of the lower conductivity of the gas. The comparative thermal conductivities for air, carbon dioxide and monofluorotrichloromethane are given in Table 27.3. [Pg.802]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Rimai et al. [57] determined the power-law dependence of the contact radius on the substrate s Young s modulus for another quintessential JKR system that of a soda-lime glass particles on polyurethane substrates. They reported that the contact radius varied as with iua calculated to be 0.12 J/m. The results... [Pg.155]

Operating conditions are important determinants of the choice of filter media and sealant used in the cartridges. Some filter media, such as cellulose paper filters, are useful only at relatively low temperatures of 95 to 150"C (200 to 300°F). For high-temperature flue gas streams, more thermally stable filter media, such as nonwoven polyester, polypropylene, or Nomex, must be used. A variety of commercially available sealants such as polyurethane plastic and epoxy will allow fabric operating temperatures up tol50°C (300°F). Selected sealants such as heat cured Plasitcol will withstand operating temperatures up to 200°C (400°F). [Pg.415]

Thermal and thermomechanical analyses44 are very important for determining die upper and lower usage temperature of polymeric materials as well as showing how they behave between diose temperature extremes. An especially useful thermal technique for polyurethanes is dynamic mechanical analysis (DMA).45 Uiis is used to study dynamic viscoelastic properties and measures die ability to... [Pg.241]

Determination of die mechanical properties of a cured polymer serves to characterize its macroscopic (bulk) features such as flexibility and hardness. Using standardized methods of the American Society for Testing and Materials (ASTM) and die International Standards Organization (ISO) allows direct comparison to otiier materials. The vast majority of polyurethane research and development is conducted in industry where mechanical properties are of vital importance because tins information is used to design, evaluate, and market products. General test categories are presented here with a few illustrative examples. [Pg.242]

Rigid polyurethane foams were prepared at room temperature using eommercial polyols and polymerie 4,4 -diphenyl methane diisoeyanate, and used to study their reeyeling by aminolysis. The reaction products obtained by treatment with diethylene triamine at 180 C were evaluated as hardeners for epoxy resins. The exothermie heats of euring were determined over the temperature range 60-80 C by differential scanning calorimetry. A reaction order of 2.2-2.4 was obtained. 8 refs. [Pg.31]

Bir et al." have analyzed the effect of blunt ballistic impact of a baton-type, less-lethal projectile on the thoracic region using human cadavers. She determined human-response corridors and developed biomechanical surrogates, which can be used for testing different new projectiles for their blunt ballistic impact. The human-response force corridor for blunt thoracic impact by a thermoplastic polyurethane-based baton round with 37 mm diameter, weighing 30 g, and traveling... [Pg.195]

Solutions of different carboxylic acids (fiimaric acid [FA], maleic acid, acrylic acid, succinic acid, and malonic acid) in ethanol have been effectively used as primers to increase the adhesion of synthetic vulcanized SBRs. The increase in the adhesion properties of SBR treated with carboxylic acid is attributed to the elimination of zinc stearate moieties and the deposition of acid on the rubber which migrates into the solvent-borne polyurethane adhesive layer once the adhesive joint is formed. The nature of the carboxylic acid determines the rate of diffusion into the adhesive and the extent of rubber-adhesive interfacial interaction. [Pg.770]

Application verification (AV) monitors are devices that are placed within test plots to measure actual spray deposition that occurred during application. The main function of AV monitors is to show whether or not the intended amount of test material was actually deposited on the soil surface. Application monitors consisting of soil-filled containers, paper disks, polyurethane foam plugs, and glass Petri dishes have all been used successfully for this purpose. Prior to using a monitor in the field, it is important to determine that the test substance can indeed be successfully extracted from the monitor and that the compound will be stable on the monitor under field conditions... [Pg.862]

Kim el al. [582] have described maleimide-based antioxidants melt grafted onto low-MW PE. IR spectroscopic methods and titration were used for the quantitative determination of the extent of grafting of the monomeric antioxidant. Smedberg el al. [583] have characterised polymer-bound stabilisers by FTIR and NMR. The binding of antioxidants and photostabilisers to polyurethanes was verified by tJV/VIS spectroscopy [584]. [Pg.143]


See other pages where Polyurethane determination is mentioned: [Pg.1332]    [Pg.1332]    [Pg.417]    [Pg.251]    [Pg.343]    [Pg.348]    [Pg.349]    [Pg.332]    [Pg.154]    [Pg.371]    [Pg.428]    [Pg.1116]    [Pg.109]    [Pg.115]    [Pg.115]    [Pg.111]    [Pg.262]    [Pg.146]    [Pg.887]    [Pg.917]    [Pg.377]    [Pg.241]    [Pg.571]    [Pg.583]    [Pg.32]    [Pg.63]    [Pg.68]    [Pg.163]    [Pg.62]    [Pg.40]    [Pg.65]    [Pg.172]    [Pg.229]   
See also in sourсe #XX -- [ Pg.38 , Pg.41 , Pg.42 , Pg.43 ]




SEARCH



© 2024 chempedia.info