Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethane Crystalline thermoplastics

The pseudocross-links, generated by the hard-segment interactions, are reversed by heating or dissolution. Without the domain crystallinity, thermoplastic polyurethanes would lack elastic character and be more gum-like in nature. In view of the outlined morphology, it is not surprising that many products develop their ultimate properties only on curing at elevated temperature, which allows the soft- and hard-phase segments to separate. [Pg.344]

Linear Elastic and Rubber Elastic Behavior. Although stiffening is quite noticeable in the glassy regime of the amorphous phase, the most spectacular effect is seen in the rubber elastic regime phase, as already evoked in the case of reinforcement by cellulose whiskers (2). The PA6-clay hybrids example presented in Table 3 is quite representative of the situation encoimtered with semi crystalline thermoplastics, but elastomeric networks benefit as well of clay layer dispersion with a two- to threefold increase in modulus for polyurethane or epoxy networks... [Pg.5013]

Materials used such as stifFer plastics can reduce hysteresis heating. Crystalline TPs for example (the popularly used acetal and nylon) can be stiffened by 25 to 50% with the addition of fillers and reinforcements. Others used include ABS, polycarbonates, polysulfones, phenylene oxides, polyurethanes, and thermoplastic polyesters. Additives, fillers, and reinforcements are used in plastics gears to meet different performance requirements (Chapter 1), Examples include glass fiber for added strength, and fibers, beads, and powders for reduced thermal expansion and improved dimensional stability. Other materials, such as molybdenum disulfide, polytetrafluoroethylene (PTFE), and silicones, may be added as lubricants to improve wear resistance. [Pg.232]

Control of enantiomorphic selectivity in polymerization of the substituted oxiranes can lead to controlled-structure polymers, the properties of which will range from crystalline thermoplastics to amorphous elastomer precursors such as are used as soft segments in polyurethanes. Crystallizable sequence distributions in highly controlled-structure polymers can lead to thermoplastic elastomers and/or to elastomers that will stress-crystallize that is, crystallize on stretching as does natural rubber (79). [Pg.59]

The physical properties of polyurethanes are derived from their molecular stmcture and deterrnined by the choice of building blocks as weU as the supramolecular stmctures caused by atomic interaction between chains. The abiHty to crystalline, the flexibiHty of the chains, and spacing of polar groups are of considerable importance, especially in linear thermoplastic materials. In rigid cross-linked systems, eg, polyurethane foams, other factors such as density determine the final properties. [Pg.343]

In thermoplastic polyurethanes, polyesters, and polyamides, the crystalline end segments, together with the polar center segments, impart good oil resistance and high upper service temperatures. The hard component in most hard polymer/elastomer combinations is crystalline and imparts resistance to solvents and oils, as well as providing the products with relatively high upper service temperatures. [Pg.14]

Whilst the crystalline fibres and their thermoplastic counterparts are no longer of importance, elastic polyurethane fibres, commonly known as spandex fibres, are of significance. These will be considered further in Section 27.4.1. [Pg.784]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Poly(tetramethylene oxide) polyols (PTMEG) are high performance polyethers that are crystalline waxes at molecular weights above 650 and liquids at lower molecular weights. They are only available as diols, but they produce adhesives with good hydrolysis resistance and moisture resistance, which is why these adhesives are even used in medical devices, blood bags, catheters, and heart-assist devices [25]. Certain thermoplastic polyurethane adhesives and solvent-borne adhesives are also based on PTMEG s. [Pg.770]

Crystalline polyesters are highly important as adhesive raw materials. They are normally crystalline waxes and are highly symmetrical in nature, which can aid the crystallization process [26]. Poly(hexamethylene adipate) and poly(caprolactone), shown in Table 2, are only two of the many crystallizable backbones. Poly(ethylene adipate) and poly(letramethylene adipate) are also commonly used in urethane adhesives. The crystalline polyesters are used in curing hot melts, waterborne polyurethanes, thermoplastic polyurethanes, and solvent-borne urethane adhesives. The adipates are available mostly as diols. The poly(caprolactones) are available as diols and triols. [Pg.770]

These materials are segmented copolyether esters formed by the melt transesterification of dimethyl terephthalate, poly(tetramethylene ether) glycol and 1,4-butane diol. As with the thermoplastic polyurethanes, one can describe a hard segment and a soft segment, the hard segments forming crystalline areas which act as pseudocrosslinks . [Pg.121]

Polyurethane. This rubber is mainly thermoset, but thermoplastic processability can be achieved by block copolymers of amorphous polyurethane rubber with strongly hydrogen-bonded crystalline polyurethane blocks. [Pg.655]

If the diol chain extender is used in exact molar proportion to the unreacted isocyanate, then a linear polyurethane elastomer is obtained. The resulting thermoplastic elastomer may be extruded or injection-moulded, and the properties arise from the ability of the hard and soft segments to form semi-crystalline domains that act as virtual crosslinks in the polymer and give it elastomeric properties, as shown in Figure 1.17. [Pg.41]

Chapter 19 considers the effects of polymer-penetrant interactions on the sorption of aromatic penetrants into a polyurethane thermoplastic elastomer(91). A direct liquid immersion approach was used, so the heat transfer problems noted above should not be important. Nevertheless, non Fickian phenomena are still observed. Unlike simple elastomers, thermoplastic elastomers achieve their crosslinked natures by formation of microdomains of either crystalline or glassy hard segments. The anomalous sorption behavior presumably reflects interactions of the solvents with these microdomains (93-94). [Pg.17]


See other pages where Polyurethane Crystalline thermoplastics is mentioned: [Pg.320]    [Pg.160]    [Pg.46]    [Pg.314]    [Pg.196]    [Pg.92]    [Pg.350]    [Pg.185]    [Pg.12]    [Pg.15]    [Pg.371]    [Pg.775]    [Pg.777]    [Pg.785]    [Pg.63]    [Pg.281]    [Pg.143]    [Pg.142]    [Pg.12]    [Pg.15]    [Pg.272]    [Pg.350]    [Pg.172]    [Pg.312]    [Pg.125]    [Pg.274]    [Pg.181]    [Pg.23]    [Pg.305]   
See also in sourсe #XX -- [ Pg.259 , Pg.263 ]




SEARCH



Polyurethanes thermoplastic

© 2024 chempedia.info