Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene physical properties

Expanded polystyrene bead mol ding products account for the largest portion of the drinking cup market and are used in fabricating a variety of other products including packaging materials, iasulation board, and ice chests. The iasulation value, the moisture resistance, and physical properties are inferior to extmded boardstock, but the material cost is much less. [Pg.419]

Styrene is a colorless Hquid with an aromatic odor. Important physical properties of styrene are shown in Table 1 (1). Styrene is infinitely soluble in acetone, carbon tetrachloride, benzene, ether, / -heptane, and ethanol. Nearly all of the commercial styrene is consumed in polymerization and copolymerization processes. Common methods in plastics technology such as mass, suspension, solution, and emulsion polymerization can be used to manufacture polystyrene and styrene copolymers with different physical characteristics, but processes relating to the first two methods account for most of the styrene polymers currendy (ca 1996) being manufactured (2—8). Polymerization generally takes place by free-radical reactions initiated thermally or catalyticaHy. Polymerization occurs slowly even at ambient temperatures. It can be retarded by inhibitors. [Pg.476]

Divinylbenzene. This is a specialty monomer used primarily to make cross-linked polystyrene resins. Pure divinylbenzene (DVB) monomer is highly reactive polymericaHy and is impractical to produce and store. Commercial DVB monomer (76—79) is generally manufactured and suppHed as mixtures of m- and -divinylbenzenes and ethylvinylbenzenes. DVB products are designated by commercial grades in accordance with the divinylbenzene content. Physical properties of DVB-22 and DVB-55 are shown in Table 10. Typical analyses of DVB-22 and DVB-55 are shown in Table 11. Divinylbenzene [1321 -74-0] is readily polymerized to give britde insoluble polymers even at ambient temperatures. The product is heavily inhibited with TBC and sulfur to minimize polymerization and oxidation. [Pg.489]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

The important features of rigidity and transparency make the material competitive with polystyrene, cellulose acetate and poly(methyl methacrylate) for a number of applications. In general the copolymer is cheaper than poly(methyl methacrylate) and cellulose acetate, tougher than poly(methyl methacrylate) and polystyrene and superior in chemical and most physical properties to polystyrene and cellulose acetate. It does not have such a high transparency or such food weathering properties as poly(methyl methacrylate). As a result of these considerations the styrene-acrylonitrile copolymers have found applications for dials, knobs and covers for domestic appliances, electrical equipment and car equipment, for picnic ware and housewares, and a number of other industrial and domestic applications with requirements somewhat more stringent than can be met by polystyrene. [Pg.441]

The physical properties of the acid- and ion-containing polymers are quite interesting. The storage moduli vs. temperature behavior (Figure 8) was determined by dynamic mechanical thermal analysis (DMTA) for the PS-PIBMA diblock precursor, the polystyrene diblock ionomer and the poly(styrene)-b-poly(isobutyl methacrylate-co-methacrylic acid) diblock. The last two samples were obtained by the KC>2 hydrolysis approach. It is important to note that these three curves are offset for clarity, i.e. the modulus of the precursor is not necessarily higher than the ionomer. In particular, one should note the same Tg of the polystyrene block before and after ionomer formation, and the extension of the rubbery plateau past 200°C. In contrast, flow occurred in... [Pg.270]

The physical properties of polystyrene depend upon the specific reaction components, the mass ratios of the components, and the conditions at which the reaction occurs. These will be discussed later. The impurities remaining in the polystyrene also affect the properties. For instance, the heat distortion temperature may be as low as 70°C if there is unreacted styrene present. It is normally between 90 and 95°C. Therefore the maximum percentage of styrene that will be allowed in the product is 0.01%. Careful drying is also necessary if the polystyrene is to be extruded. For this application the polystyrene must contain a maximum of 0.03-0.05% water. We will set 0.03% as the maximum amount of water allowed. The specifications for the polystyrene are given in Table 3E-1. Different types of rubbers may be used for making impact polystyrenes.12 We shall use polybutadiene. [Pg.72]

The Acid Effect. The possible mechanistic role of hydrogen atoms in the current radiation grafting work becomes even more significant when acid is used as an additive to enhance the copolymerisation. At the concentrations utilised, acid should not affect essentially the physical properties of the system such as precipitation of the polystyrene grafted chains or the swelling of the polyethylene. Instead the acid effect may be attributed to the radiation chemical properties of the system. Thus Baxendale and Mellows (15) showed that the addition of acid to methanol increased G(H2) considerably. The precursors of this additional hydrogen were considered to be H atoms from thermalised electron capture reactions, typified in Equation 5. [Pg.256]

Kim, J., Kim, B., Jung, B., Kang, Y. S., Ha, H. Y, Oh, I. H. and Ihn, K. J. 2002. Effect of casting solvent on morphology and physical properties of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers. Macromolecular Rapid Communication 23 753-756. [Pg.182]

Most polystyrene products are not homopolystyrene since the latter is relatively brittle with low impact and solvent resistance (Secs. 3-14b, 6-la). Various combinations of copolymerization and blending are used to improve the properties of polystyrene [Moore, 1989]. Copolymerization of styrene with 1,3-butadiene imparts sufficient flexibility to yield elastomeric products [styrene-1,3-butadiene rubbers (SBR)]. Most SBR rubbers (trade names Buna, GR-S, Philprene) are about 25% styrene-75% 1,3-butadiene copolymer produced by emulsion polymerization some are produced by anionic polymerization. About 2 billion pounds per year are produced in the United States. SBR is similar to natural rubber in tensile strength, has somewhat better ozone resistance and weatherability but has poorer resilience and greater heat buildup. SBR can be blended with oil (referred to as oil-extended SBR) to lower raw material costs without excessive loss of physical properties. SBR is also blended with other polymers to combine properties. The major use for SBR is in tires. Other uses include belting, hose, molded and extruded goods, flooring, shoe soles, coated fabrics, and electrical insulation. [Pg.529]

The polymers described above have been chemically pure, although physically helerodisperse. It is oflen possible lo combine two or more of these monomers in the same molecule to form a copolymer. This process produces still further modification of molecular properties and, in turn, modification of the physical properties of file product. Many commercial polymers are copolymers because of the blending of properties achieved in this way. For example, one of the important new polymers of the past ten years has been the family of copolymers of acrylonitrile, butadiene and styrene, commonly called ABS resins. The production of these materials has grown rapidly in a short period of time because of their combination of dimensional stability and high impact resistance. These properties are related to the impact resistance of acrylonitrile-butadiene rubber and the dimensional stability of polystyrene, which are joined in the same molecule. [Pg.1350]


See other pages where Polystyrene physical properties is mentioned: [Pg.417]    [Pg.151]    [Pg.74]    [Pg.293]    [Pg.187]    [Pg.514]    [Pg.70]    [Pg.219]    [Pg.469]    [Pg.582]    [Pg.26]    [Pg.503]    [Pg.114]    [Pg.16]    [Pg.298]    [Pg.57]    [Pg.1448]    [Pg.595]    [Pg.277]    [Pg.134]    [Pg.645]    [Pg.35]    [Pg.23]    [Pg.426]    [Pg.20]    [Pg.414]    [Pg.213]    [Pg.221]    [Pg.302]    [Pg.197]    [Pg.346]    [Pg.45]    [Pg.151]    [Pg.1354]    [Pg.1430]    [Pg.1436]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Expandable polystyrene physical properties

Physical properties of polystyrene

Polystyrene foams physical properties

Polystyrenes physical

Syndiotactic polystyrene physical properties

© 2024 chempedia.info