Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyolefins polymers, structures

Most commercial polymers are substantially linear. They have a single chain of mers that forms the backbone of the molecule. Side-chains can occur and can have a major affect on physical properties. An elemental analysis of any polyolefin, (e.g., polyethylene, polypropylene, poly(l-butene), etc.) gives the same empirical formula, CH2, and it is only the nature of the side-chains that distinguishes between the polyolefins. Polypropylene has methyl side-chains on every other carbon atom along the backbone. Side-chains at random locations are called branches. Branching and other polymer structures can be deduced using analytical techniques such as NMR. [Pg.469]

SEC-FTIR yields the average polymer structure as a function of molecular mass, but no information on the distribution of the chemical composition within a certain size fraction. SEC-FTIR is mainly used to provide information on MW, MWD, CCD, and functional groups for different applications and different materials, including polyolefins and polyolefin copolymers [703-705]. Quantitative methods have been developed [704]. Torabi et al. [705] have described a procedure for quantitative evaporative FUR detection for the evaluation of polymer composition across the SEC chromatogram, involving a post-SEC treatment, internal calibration and PLS prediction applied to the second derivative of the absorbance spectrum. [Pg.528]

With the details associated with ADMET chemistry reasonably well understood, we have embarked on a study of the synthesis of well-controlled polymer structures via metathesis polycondensation chemistry [37]. A series of well-defined polyolefins have been designed to model the crystallization behavior of polyethylene and its related copolymers, including new materials synthesized by metallocene-based catalysts. This synthesis concept has been reduced to practice, and polymers that will aid in the understanding of branching within polyethylene itself have been produced. [Pg.202]

The PET polymer structure can also be generated from the reaction of ethylene glycol and dimethyl terephthalate, with methyl alcohol as the byproduct. A few producers still use this route. The aromatic rings coupled with short aliphatic chains are responsible for a relatively stiff polymer molecule, as compared with more aliphatic structures such as polyolefin or polyamide. The lack of segment mobility in the polymer chains results in relatively high thermal stability, as will be discussed later. [Pg.404]

New polymer structures allow the control of processability and final characteristics. For example, Mitsui is launching nanostructured metallocene alpha-olefins that have a crystallite size of the order of nanometres instead of microns as for conventional metallocene polyolefins. This yields a better balance of transparency, heat resistance, flexibility and elasticity characteristics. Targeted applications are automotive interior trim, packaging film, construction materials, protective films for electronic and optical parts, sealing products and as polymer modifiers. [Pg.843]

Cast film extrusion of polyolefins has been developed to obtain flexible films with a high level of transparency by freezing the amorphous polymer structure of the melt on a chill roll. Cast films are mono-oriented in extrusion direction. [Pg.119]

An analysis of the ionic factors for the polymerization of dienes to cis and trans structures is possible in the same way as for isotactic mono-enes. The mechanism which controls the steric structure of poly 1,4 dienes is parallel to that we have already seen for the mono-olefins. Roha (2) listed the catalysts which polymerize dienes according to the polymer structures produced. It was shown that the highly anionic as well as the highly cationic catalyst systems with increasing ionic separation produced trans-poly-1,4-dienes. This is analogous to the production of syndiotactic polyolefins. [Pg.381]

Polymer Hybrids Based on Polyolefins -Syntheses, Structures, and Properties... [Pg.79]

Phosphorus FR compounds cover a wide range of chemical structures not only as additives incorporated in the molten state in thermoplastics but also as reactive components introduced as monomers in thermoset polymers phosphates, phosphonates, phosphinates, phosphine oxides, phosphites, red phosphorus, etc. They can be also used as layered silicate modifiers. Organic phosphates and red phosphorus are among the most frequent additive FRs used in various non-polyolefinic polymers. [Pg.308]

A further breakthrough was the synthesis of enantiomeric sterorigid ansa-metallocenes by Brintzinger and co-workers [33] and the discovery by Ewen [34] that such racemic metallocene/methylalumoxane systems generate isotactic polypropylene. It was further found that the metallocene structure determines the polymer structure [35-37]. Again, with these compounds polyolefins such as syndiotactic polypropylene become available on a large scale [38]. Indeed, metallocene/methylalumoxane catalysts offer new prospects for olefin oligomers and polymers [39 2],... [Pg.231]

All these new polymers and copolymers are based on wellknown monomers. By tailoring the polymer structure using catalysts or catalyst systems new combinations of properties can be achieved which open the door for new applications. The catalytic polymerization processes show new possibilities in the polyolefin field to broaden the field of applications for these products [73]. [Pg.237]

Ziegler-Natta catalyst (ZNC) A catalyst involved in creating highly structured (stereoregular) polyolefin polymer chains. Used to mass-produce polyethylene and polypropylene. [Pg.287]


See other pages where Polyolefins polymers, structures is mentioned: [Pg.114]    [Pg.15]    [Pg.378]    [Pg.267]    [Pg.159]    [Pg.161]    [Pg.1]    [Pg.55]    [Pg.324]    [Pg.16]    [Pg.5317]    [Pg.196]    [Pg.137]    [Pg.27]    [Pg.464]    [Pg.547]    [Pg.1609]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Polymer Polyolefins

Polyolefin polymers

© 2024 chempedia.info