Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyolefins flame retardants

Cogen, J.M., Jow, J., Lin, T.S., and Whaley, P.D., New approaches to halogen free polyolefin flame retardant wire and cable compounds, in Proceedings of the 52nd IWCS/Focus International Wire Cable Symposium, Philadelphia, PA, 2003, pp. 102-107. [Pg.807]

Uses Dough conditioner for bakery prods. whipping agent emulsifier, stabilizer in cosmetics, foods, and pharmaceuticals conditioner for dehydrated potatoes acid neutralizer/acceptor/scavenger for polyolefins, flame retardants, pigments lubricant for PVC in paper/paperboard in contact with aq./fatty foods in cellophane for food pkg. [Pg.713]

The smoke production of polyolefins flame-retarded with halogenated additives is higher than that of the basic polymer, and in fact, the gaseous products from these modified resins are more toxic and corrosive. [Pg.388]

Liauw, C.M., Lees, G.C., Rothon, R.N., Wild, F., Schofield, J.D., Thetford, D., and Sunderland, P. (2003) The effect of molecular structure of maleimide based interfacial modifiers on the mechanical properties of polyolefin/flame retardant filler composites. Proceedings of the... [Pg.139]

Uses Acid neutralizer/acceptor/scavenger for polyolefins, flame retardants, pig-... [Pg.827]

Alumina trihydtate is also used as a secondary flame retardant and smoke suppressant for flexible poly(vinyl chloride) and polyolefin formulations in which antimony and a halogen ate used. The addition of minor amounts of either zinc borate or phosphoms results in the formation of glasses which insulate the unbumed polymer from the flame (21). [Pg.458]

F. Molesky in Recent Advances in Flame Retardamy of Polymeric Materials, Stamford, Coim., 1990 F. Molesky, "The Use of Magnesium Hydroxide for Flame Retarded Low Smoke Polypropylene," Polyolefins IHInternational Conference, Feb. 24,1991, Houston, Tex. [Pg.463]

In order for a soHd to bum it must be volatilized, because combustion is almost exclusively a gas-phase phenomenon. In the case of a polymer, this means that decomposition must occur. The decomposition begins in the soHd phase and may continue in the Hquid (melt) and gas phases. Decomposition produces low molecular weight chemical compounds that eventually enter the gas phase. Heat from combustion causes further decomposition and volatilization and, therefore, further combustion. Thus the burning of a soHd is like a chain reaction. For a compound to function as a flame retardant it must intermpt this cycle in some way. There are several mechanistic descriptions by which flame retardants modify flammabiUty. Each flame retardant actually functions by a combination of mechanisms. For example, metal hydroxides such as Al(OH)2 decompose endothermically (thermal quenching) to give water (inert gas dilution). In addition, in cases where up to 60 wt % of Al(OH)2 may be used, such as in polyolefins, the physical dilution effect cannot be ignored. [Pg.465]

Decabrom has poor uv stabiUty ia styrenic resias and causes significant discoloration. The use of uv stabilizers can minimize, but not eliminate, this effect. For styrenic apphcations that require uv stabiUty, several other brominated flame retardants are more suitable. In polyolefins, the uv stabiUty of decabrom is more easily improved by the use of stabilizers. [Pg.468]

Ethylenebis(tetrabromophthalimide). The additive ethylenebis(tetrabromophthalimide) [41291 -34-3] is prepared from ethylenediamine and tetrabromophthabc anhydride [632-79-1]. It is a specialty product used ia a variety of appHcations. It is used ia engineering thermoplastics and polyolefins because of its thermal stabiUty and resistance to bloom (42). It is used ia styrenic resias because of its uv stabiUty (43). This flame retardant has been shown to be more effective on a contained bromine basis than other brominated flame retardants ia polyolefins (10). [Pg.469]

Bis(bexacbIorocycIopentadieno)cycIooctane. The di-Diels-Alder adduct of hexachlorocyclopentadiene [77 7 ] and cyclooctadiene (44) is a flame retardant having unusually good thermal stabiUty for a chlotinated aUphatic. In fact, this compound is comparable ia thermal stabiUty to brominated aromatics ia some appHcations. Bis(hexachlorocyclopentadieno)cyclooctane is usedia several polymers, especially polyamides (45) and polyolefins (46) for wire and cable appHcations. Its principal drawback is the relatively high use levels required compared to some brominated flame retardants. [Pg.469]

A series of compounded flame retardants, based on finely divided insoluble ammonium polyphosphate together with char-forming nitrogenous resins, has been developed for thermoplastics (52—58). These compounds are particularly useful as iatumescent flame-retardant additives for polyolefins, ethylene—vinyl acetate, and urethane elastomers (qv). The char-forming resin can be, for example, an ethyleneurea—formaldehyde condensation polymer, a hydroxyethylisocyanurate, or a piperazine—triazine resin. [Pg.476]

Usage of phosphoms-based flame retardants for 1994 in the United States has been projected to be 150 million (168). The largest volume use maybe in plasticized vinyl. Other use areas for phosphoms flame retardants are flexible urethane foams, polyester resins and other thermoset resins, adhesives, textiles, polycarbonate—ABS blends, and some other thermoplastics. Development efforts are well advanced to find appHcations for phosphoms flame retardants, especially ammonium polyphosphate combinations, in polyolefins, and red phosphoms in nylons. Interest is strong in finding phosphoms-based alternatives to those halogen-containing systems which have encountered environmental opposition, especially in Europe. [Pg.481]

Flame and Smoke Retardants. Molybdenum compounds are used extensively as flame retardants (qv) (93,94) in the formulation of halogenated polymers such as PVC, polyolefins, and other plastics elastomers and fabrics. An incentive for the use of molybdenum oxide and other molybdenum smoke and flame retardants is the elimination of the use of arsenic trioxide. Although hydrated inorganics are often used as flame retardants, and thought to work by releasing water of crystallization, anhydrous molybdenum oxides are effective. Presumably the molybdenum oxides rapidly form... [Pg.477]

Flame-Retardant Applications. The flame resistance of polyolefins, unsaturated polyester, mbber, and many other synthetic materials can be improved by the iaclusion of chloriaated paraffias. The soHd 70% chlorine product is the preferred choice ia most polymeric systems, but the Hquid grades are widely used ia mbbers, polyurethane, and textile treatments. [Pg.44]

A manufacturer considering using a thermoplastic elastomer would probably first consider one of the thermoplastic polyolefin rubbers or TPOs, since these tend to have the lowest raw polymer price. These are mainly based on blends of polypropylene and an ethylene-propylene rubber (either EPM or EPDM) although some of the polypropylene may be replaeed by polyethylene. A wide range of blends are possible which may also contain some filler, oil and flame retardant in addition to the polymers. The blends are usually subject to dynamic vulcanisation as described in Section 11.9.1. [Pg.878]

Figure 10.2 Chemical stmcture of a UV-stable nonhalo-genated iV-alkoxy-hindered amine flame-retardant additive (Flamestab NOR 116) for polyolefins (Ciba Specialty Chemicals)... Figure 10.2 Chemical stmcture of a UV-stable nonhalo-genated iV-alkoxy-hindered amine flame-retardant additive (Flamestab NOR 116) for polyolefins (Ciba Specialty Chemicals)...
Hitachi Cable Ltd. (35) has claimed that dehydrogenation catalysts, exemplified by chromium oxide—zinc oxide, iron oxide, zinc oxide, and aluminum oxide—manganese oxide inhibit drip and reduce flammability of a polyolefin mainly flame retarded with ATH or magnesium hydroxide. Proprietary grades of ATH and Mg(OH)2 are on the market which contain small amounts of other metal oxides to increase char, possibly by this mechanism. [Pg.104]

T. Handa, T. Nagashima and N. Ebihara, Synergistic Action of Sb2(>3 with Bromine-Containing Flame Retardants in Polyolefins. II. Structure-Effect Relationships in Flame Retardant Systems," J. of Fire Retardant Chemistry,, 37 (1981). ... [Pg.127]

Zinc Borate (2Zn0-3B203-3.5H20) is a unique multifuntional fire retardant. It can function as a flame retardant, smoke suppressant, afterglow suppressant, as well as an anti-tracking agent in polymers. It has been used extnesively as a fire retardant in PVC, polyolefin, nylon, polyester, epoxy, acrylic, urethane, rubbers, etc. [Pg.157]

Polyolefines, like simple alkanes, can be chlorinated by chlorine giving hydrogen chloride and chlorinated products such as Tyrin, used as plasticizers and flame retardants, and poly (vinyl dichloride), which has better heat resistance than PVC and is used for hot water piping. [Pg.498]

Complex organo-silane products are now emerging which seem able give significant improvements in the impact strength of highly filled polyolefins, especially when used in conjunction with metal hydroxide flame retardants [62]. This may significantly increase their use. [Pg.83]

Aluminium hydroxide has a Moh hardness of about 3 and a specific gravity of 2.4. It decomposes endothermically with the release of water at about 200 °C and this makes it a very useful flame retardant filler, this being the principal reason for its use in polymers. The decomposition temperature is in fact too low for many thermoplastics applications, but it is widely used in low smoke P VC applications and finds some use in polyolefins. For these applications low aspect ratio particles with a size of about 1 micron and a specific surface area of 4-10 m g are preferred. The decomposition pathway can be diverted through the mono-hydrate by the application of pressure, and this may reduce the flame retardant effect [97]. This effect can be observed with the larger sized particles. Although it is chemically the hydroxide, it has for many years been known as alumina trihydrate and by the acronym ATH. [Pg.99]

Flame retardants are often used in combination with anti-drip agents, which reduce the tendency of the material to form burning droplets in the event of fire (67). Fluorinated polyolefins are preferably used as anti-drip agents (22,67). [Pg.235]

W.J. Hall, N.M.M. Mitan, T. Bhaskar, A. Muto, Y. Sakata, and P.T. Williams, The co-pyrolysis of flame retarded high impact polystyrene and polyolefins, /. Anal. Appl. Pyrolysis, 80(2) 406-415, October 2007. [Pg.294]

PBBs were also widely used as flame retardant additives in polymer formulations, e.g., synthetic fibers, molded plastics and plastic housings also in the manufacture of polycarbonates, polyesters, polyolefins and polystyrenes. Nixed ABS polymers (acrylonitrile -butadiene - styrene), plastics, coatings and lacquers also contained added PBBs to enhance fire-retardancy. [Pg.354]

The complete absence of cross-linking reactions prevents potential char-forming reactions being favored in the presence of conventional condensed-phase flame retardants, and hence, the most effective flame retardants for polyolefins are usually bromine-based so that flame inhibition in the vapor phase is effected or intumescent-based, where char-promotion arises from the flame retardant itself. [Pg.20]

Pentaerythritol phosphate has an excellent char-forming ability owing to the presence of the pentaerythritol structure. The bis-melamine salt of the bis acid phosphate of pentaerythritol is also available commercially. This is a high melting solid that acts as an intumescent flame-retardant additive for polyolefins. Synergistic combinations with ammonium polyphosphates have also been developed primarily for urethane elastomers. Self-condensation of tris(2-chloroethyl) phosphate produces oligomeric 2-chloroethylphosphate. It has a low volatility, and is useful in resin-impregnated air filters, in flexible urethane foams and in other structural foams.11... [Pg.112]

Cyclic oligomeric phosphonates with the varying degrees of structural complexity (Structure 5.4) are also available in the market.25 They are widely used as flame-retardant finishes for polyester fabrics. After the phosphonate is applied from an aqueous solution, the fabric is heated to swell and soften the fibers, thus allowing the phosphonate to be absorbed and strongly held. It is also a useful retardant in polyester resins, polyurethanes, polycarbonates, polyamide-6, and in textile back coatings. A bicyclic pentaerythritol phosphate has been more recently introduced into the market for use in thermosets as well as for polyolefins (preferably, in combination with melamine or ammonium polyphosphate)... [Pg.112]


See other pages where Polyolefins flame retardants is mentioned: [Pg.310]    [Pg.17]    [Pg.310]    [Pg.17]    [Pg.468]    [Pg.478]    [Pg.148]    [Pg.8]    [Pg.9]    [Pg.715]    [Pg.715]    [Pg.722]    [Pg.430]    [Pg.101]    [Pg.1]    [Pg.5]    [Pg.79]    [Pg.108]   
See also in sourсe #XX -- [ Pg.122 , Pg.125 , Pg.128 , Pg.130 , Pg.134 , Pg.140 ]

See also in sourсe #XX -- [ Pg.208 , Pg.210 , Pg.213 , Pg.214 ]




SEARCH



Flame retardant polyolefin

© 2024 chempedia.info