Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization continuous stirred tank reactor

Third-generation high yield supported catalysts are also used in processes in which Hquid monomer is polymerized in continuous stirred tank reactors. The Hypol process (Mitsui Petrochemical), utilizes the same supported catalyst technology as the Spheripol process (133). Rexene has converted the hquid monomer process to the newer high yield catalysts. Shell uses its high yield (SHAC) catalysts to produce homopolymers and random copolymers in the Lippshac process (130). [Pg.416]

Also, polymerization reactions are carried out in a variety of reactors including agitated batch reactors, continuous stirred tank reactors (CSTR), multizone autoclaves, loop reactors, tubular reactors, fluidized bed reactors, and a combination of these reactors. [Pg.2336]

F Teymour. The Dynamic Behavior of Free-Radical Solution Polymerization in Continuous Stirred Tank Reactors. PhD thesis, University of Wisconsin, Madison, 1989. [Pg.299]

L S. Henderson. Stability analysis of polymerization in. continuous stirred-tank reactors. Chem. Eng. Prog., pages 42-50, March 1,987. [Pg.191]

Liquid monomer is polymerized in continuous stirred tank reactors in a number of processes. The Hypol process, developed by Mitsui Petrochemical, uses a cascaded series of stirred reactors for homopolymerization, followed by fluidized bed gas-phase reactors for copolymerization (274). El Paso (now Himtsman) converted the Rexall liquid monomer process to use high yield catalysts eliminating the sections required for deashing and removal of atactic material (275). Shell (now Basell) developed the LIPP process to produce homopolymers and random copolymers, using their high yield catalysts. [Pg.6805]

The main distinction of polymerization in continuous stirred tank reactors (CSTRs) from batch/plug-fiow polymerization is the distribution of reactor residence times. In a single CSTR, the distribution of molecules in residence time (i.e., the probability to be in the reactor during time period t is given by [37, 38]... [Pg.111]

Example 4. Which type of isothermal reactor will produce the narrowest possible distribution of chain lengths in an anionic polymerization— batch, continuous stirred tank (backmix) (assume both perfectly stirred), plug-flow tubular, or laminar flow tubular ... [Pg.185]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

The original wartime process was mn batchwise in reactors similar to those used for suspension polymerization. Since then, in many plants, the reactors have been hooked together as a series of continuous stirred tanks. [Pg.437]

Continuous stirred-tank reactors can behave very differently from batch reactors with regard to the number of particles formed and polymerization rate. These differences are probably most extreme for styrene, a monomer which closely follows Smith-Ewart Case 2 kinetics. Rate and number of particles in a batch reactor follows the relationship expressed by Equation 13. [Pg.9]

IT Duerksen, J.H., "Free Radical Polymerization of Styrene in Continuous Stirred Tank Reactors", Ph.D. Thesis, McMaster University, Hamilton, Ontario (1968). [Pg.70]

Various reactor combinations are used. For example, the product from a relatively low solids batch-mass reactor may be transferred to a suspension reactor (for HIPS), press (for PS), or unagitated batch tower (for PS) for finishing. In a similar fashion, the effluent from a continuous stirred tank reactor (CSTR) may be transferred to a tubular reactor or an unagitated or agitated tower for further polymerization before devolatilization. [Pg.72]

The research programme into n-butyl lithium initiated, anionic polymerization started at Leeds in 1972 and involved the construction of a pilot scale, continuous stirred tank reactor. This was operated isothermally, to obtain data under a typical range of industrial operating conditions. [Pg.281]

A pilot scale plant, incorporating a three litre continuous stirred tank reactor, was used for an investigation into the n-butyl lithium initiated, anionic polymerization of butadiene in n-hexane solvent. The rig was capable of being operated at elevated temperatures and pressures, comparable with industrial operating conditions. [Pg.294]

Anionic Styrene Polymerization in a Continuous Stirred-Tank Reactor... [Pg.295]

Reactor Conditions for Experimental Runs. Operating conditions for the continuous, stirred tank reactor runs were chosen to study the effects of mixing speed on the monomer conversion and molecular weight distribution at different values for the number average degree of polymerization of the product polymer. [Pg.309]

Continuous-stirred tank reactor anionic polymerization, 23 385, 394-395, 396 Continuous-stirred-tank-reactor processes, 23 366, 367... [Pg.214]

CSTR reactor system, 23 396. See also Continuous- stirred tank reactor (CSTR) anionic polymerization C-toxiferine, 2 74, 99 C-type inks, 14 324, 326 C-type natriuretic peptide (CNP), 5 186-187... [Pg.237]

The BASF continuous mass polymerization process employed a tower reactor with an upstream continuous stirred tank reactor (16) (Figure 1). [Pg.268]

This controller was applied to a methylmethacrylate (MMA) solution ho-mopol nnerization conducted in a continuous stirred tank reactor. The solvent and initiator are ethyl acetate and benzoyl peroxide, respectively. The polymerization system parameters for numerical simulations have been taken... [Pg.107]

J. Alvarez, R. Suarez, and A. Sanchez. Nonlinear decoupling control of free radical polymerization continuous stirred tank reactors. Chem. Enq. Sci., 45 3341-3354, 1990. [Pg.113]

A continuous bulk polymerization process with three reaction zones in series has been developed. The degree of polymerization increases from the first reactor to the third reactor. Examples of suitable reactors include continuous stirred tank reactors, stirred tower reactors, axially segregated horizontal reactors, and pipe reactors with static mixers. The continuous stirred tank reactor type is advantageous, because it allows for precise independent control of the residence time in a given reactor by adjusting the level in a given reactor. Thus, the residence time of the polymer mixtures can be independently adjusted and optimized in each of the reactors in series (8). [Pg.271]

As in any type of polymerization, a batch reaction is not as commercially attractive as a continuous polymerization process that can produce larger quantities of polymer in the same amount of time. The first continuous polymerizations in C02 were reported (Charpentier et al., 1999) with the monomers acrylic acid and vinylidene fluoride. The vinylidene fluoride polymerization was extensively studied at 75 °C, 275 bar. The polymerizations were run with residence times that varied between 15 and 40 min in a continuous-stirred-tank reactor before collection in a filter. The maximum rate of polymerization was determined to be 19 x 10 5 mol L-1s-1. Future research will move toward continuous removal of polymer, recycling of unreacted monomer and C02, and expansion to other monomers. [Pg.154]

A number of innovative polymerization reactors using loop reactors, plug-flow and static mixer reactors, and continuous stirred-tank reactors have been reported. For example, Wilkinson and Geddes (15) describe a 50-liter reactor that has the same capacity as a 5000-gallon batch reactor. Extruders, thin-film evaporators, and other devices designed to provide intense mixing for viscous or unstable materials have also been used as reactors. [Pg.494]

Although the early literature described the application of a tubular reactor for the production of SBR latexes(1), the standard continuous emulsion polymerization processes for SBR polymerization still consist of continuous stirred tank reactors(CSTR s) and all of the recipe ingredients are normally fed into the first reactor and a latex is removed from the last one, as shown in Figure 1. However, it is doubtful whether this conventional reactor combination and operation method is the most efficient in continuous emulsion polymerization. As is well known, the kinetic behavior of continuous emulsion polymerization differs very much according to the kind of monomers. In this paper, therefore, the discussion about the present subject will be advanced using the... [Pg.125]

The use of a precision digital density meter as supplied by Mettler Instruments (Anton Paar, Ag.) appeared attractive. Few references on using density measurements to follow polymerization or other reactions appear in the literature. Poehlein and Dougherty (2) mentioned, without elaboration, the occasional use of y-ray density meters to measure conversion for control purposes in continuous emulsion polymerization. Braun and Disselhoff (3) utilized an instrument by Anton Paar, Ag. but only in a very limited fashion. More recently Rentsch and Schultz(4) also utilized an instrument by Anton Paar, Ag. for the continuous density measurement of the cationic polymerization of 1,3,6,9-tetraoxacycloundecane. Ray(5) has used a newer model Paar digital density meter to monitor emulsion polymerization in a continuous stirred tank reactor train. Trathnigg(6, 7) quite recently considered the solution polymerization of styrene in tetrahydrofuran and discusses the effect of mixing on the reliability of the conversion data calculated. Two other references by Russian authors(8,9) are known citing kinetic measurements by the density method but their procedures do not fulfill the above stated requirements. [Pg.344]

While vinyl acetate is normally polymerized in batch or continuous stirred tank reactors, continuous reactors offer the possibility of better heat transfer and more uniform quality. Tubular reactors have been used to produce polystyrene by a mass process (1, 2), and to produce emulsion polymers from styrene and styrene-butadiene (3 -6). The use of mixed emulsifiers to produce mono-disperse latexes has been applied to polyvinyl toluene (5). Dunn and Taylor have proposed that nucleation in seeded vinyl acetate emulsion is prevented by entrapment of oligomeric radicals by the seed particles (6j. Because of the solubility of vinyl acetate in water, Smith -Ewart kinetics (case 2) does not seem to apply, but the kinetic models developed by Ugelstad (7J and Friis (8 ) seem to be more appropriate. [Pg.561]


See other pages where Polymerization continuous stirred tank reactor is mentioned: [Pg.81]    [Pg.69]    [Pg.836]    [Pg.69]    [Pg.7868]    [Pg.31]    [Pg.279]    [Pg.384]    [Pg.521]    [Pg.295]    [Pg.297]    [Pg.300]    [Pg.406]    [Pg.74]    [Pg.101]    [Pg.717]    [Pg.17]    [Pg.200]    [Pg.528]    [Pg.529]    [Pg.434]   
See also in sourсe #XX -- [ Pg.256 ]




SEARCH



Continuous stirred reactor

Continuous stirred tank reactor

Continuous stirring tank reactor

Continuously stirred tank

Continuously stirred tank reactor

Polymerization continued)

Polymerization continued) continuous

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred continuous

Stirred polymerization reactor

Stirred tank reactors

Tank reactor

Tank reactor reactors

© 2024 chempedia.info