Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization processes reactor design

Process Technology. In commercial addition and condensation polymerization processes reactor design is an important factor for the quality and economics of the polymer. Combining macromolecular kinetics with reactor and process design has led to a new concept called reaction engineering. D. C. Chappelear and R. H. M. Simon review this novel concept in Chapter 1. [Pg.7]

Heat removal Removal of reaction heat from a highly viscous polymeric fluid or a heterogeneous reaction mixture is often a critical reactor design and operational problem. In many industrial exothermic polymerization processes, reactor thermal runaway is the most serious potential hazard. [Pg.2335]

By 1993, it was apparent that a reduction in the capital and operating cost and an improvement in plant reliability and uptime would require modification of the polymerization reactor systems from what was operating in the pilot facilities at both Idemitsu and Dow. In fact, what was required was an entirely new to the world polymerization process specifically designed to the requirements and characteristics of the SPS polymerization. [Pg.7]

In this pyrolysis, sub atmospheric partial pressures are achieved by employing a diluent such as steam. Because of the corrosive nature of the acids (HE and HCl) formed, the reactor design should include a platinum-lined tubular reactor made of nickel to allow atmospheric pressure reactions to be mn in the presence of a diluent. Because the pyrolysate contains numerous by-products that adversely affect polymerization, the TFE must be purified. Refinement of TFE is an extremely complex process, which contributes to the high cost of the monomer. Inhibitors are added to the purified monomer to avoid polymerization during storage terpenes such as t7-limonene and terpene B are effective (10). [Pg.348]

PVDE is manufactured using radical initiated batch polymerization processes in aqueous emulsion or suspension operating pressures may range from 1 to 20 MPa (10—200 atm) and temperatures from 10 to 130°C. Polymerization method, temperature, pressure, recipe ingredients, the manner in which they are added to the reactor, the reactor design, and post-reactor processing are variables that influence product characteristics and quaUty. [Pg.386]

Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors. Table I provides an overview of general reactor designs used with PS and HIPS processes on the basis of reactor function. The polymer concentrations characterizing the mass polymerizations are approximate there could be some overlapping of agitator types with solids level beyond that shown in the tcd>le. Polymer concentration limits on HIPS will be lower because of increased viscosity. There are also additional applications. Tubular reactors, for example, in effect, often exist as the transfer lines between reactors and in external circulating loops associated with continuous reactors.
This monomer is ethylene when R is hydrogen, propylene when R is a methyl group, styrene when R is a benzene ring, and vinyl chloride when R is chlorine. The polymers formed from these four monomers account for the majority of all commercial plastics. The polymers come in great variety and are made by many different processes. All of the polymerizations share a characteristic that is extremely important from the viewpoint of reactor design. They are so energetic that control of the reaction exotherm is a key factor in all designs. [Pg.468]

One final note While the techniques used here were applied to control temperature In large, semi-batch polymerization reactors, they are by no means limited to such processes. The Ideas employed here --designing pilot plant control trials to be scalable, calculating transfer functions by time series analysis, and determining the stochastic control algorithm appropriate to the process -- can be applied In a variety of chemical and polymerization process applications. [Pg.486]

Consider again a batch polymerization process where the process is characterized by the sequential execution of a number of steps that take place in the two reactors. These are steps such as initial reactor charge, titration, reaction initiation, polymerization, and transfer. Because much of the critical product quality information is available only at the end of a batch cycle, the data interpretation system has been designed for diagnosis at the end of a cycle. At the end of a particular run, the data are analyzed and the identification of any problems is translated into corrective actions that are implemented for the next cycle. The interpretations of interest include root causes having to do with process problems (e.g., contamination or transfer problems), equipment malfunctions (e.g., valve problems or instrument failures), and step execution problems (e.g., titration too fast or too much catalyst added). The output dimension of the process is large with more than 300 possible root causes. Additional detail on the diagnostic system can be found in Sravana (1994). [Pg.91]

Polymerization processes represent an extremely important aspect of the chemical processing industry. Since many of the properties of polymeric materials are markedly affected by their average molecular weight and their molecular weight distribution, the design of reactors for polymerization processes offers many opportunities for the use of the principles presented earlier in this chapter. [Pg.336]

The continuous mass process is divided into 4 steps rubber solution in styrene monomer, polymerization, devolatilization and compounding. In 1970 N. Platzer (40) drew up a survey of the state of the art. Polymerization is divided into prepolymerization and main polymerization for both steps reactor designs other than the tower reactors shown in Figure 2 have been proposed. Main polymerization is taken to a conversion of 75 to 85% residual monomer and any solvent are separated under vacuum. The copolymer then passes to granulating equipment, frequently through one or more intermediate extruders in which colorant and other auxiliaries are added. [Pg.271]

In any polymerization process one must be concerned with removal of the coproduct (typically H2O or HCl) so that equilibrium limitations do not limit the polymer size. The removal of the product in condensation polymerization to attain higher polymer lengths is a major consideration in polymerization reactor design. This can be done by withdrawing water vapor or by using two phases so that the water and polymer migrate to different phases. [Pg.465]

Reactive extruders and extrusion dies of different designs can be easily included in standard technological scheme of polymer production plants, such as those for polycaproamide synthesis, as shown in Fig. 4.39. In this case, a reactive material premixed in a tank 1 is fed into a static device 2 for prepolymerization, where part of the polymerization process takes place. Then the reactive mixture enters the extruder-reactor 3. The necessary temperature distribution is maintained along the extruder. Transfer of the reactive mass proceeds by a system of two coaxial screws mounted in series in a common barrel. Controlling the relative rotation speed of both screws provides the necessary residence time for the reactive mass in the extrader, so that the material reaching the outlet section of the die is a finished polymer. [Pg.171]

While it should be self-evident that a rational reactor design demands a knowledge of both the fluid dynamic environment and the detailed process kinetics, the latter are rarely available. In many instances this leads to the severe limitation of many important reactions by an inadequate fluid dynamic intensity. Some of these are known to be fast, e.g., liquid-phase nitrations, while others are (incorrectly) assumed to be slow, e.g., most polymerizations. In these circumstances the pragmatic approach is to use a high-intensity reactor for each system and then to assess the impact upon the space-time productivity. Obviously, an intrinsically slow system is resistant to further acceleration and this will rapidly become evident. One significant qualification of this contention involves the very... [Pg.115]

Despite these generalizations, the reduction or elimination of coagulum is usually best accomplished by a "systems approach", i.e., a consideration of latex properties to be achieved in the emulsion polymerization, the economics of the polymerization process, and the deliberate design of the reactor system for that particular polymerization system. Each polymerization system must be considered as a separate system and treated as such. The most effective approach to reduce or eliminate the formation of coagulum is to determine the mechanism by which it is formed and... [Pg.207]

In order to design experiments to test the influence of process variables on polymer infrastructure, a simple but general process design is needed. For these studies a new sequential feed polymerization process called "power-feed" was chosen (7 -8, 9). The advantage of this technique is that almost any conventional monomer feed profile can be simulated and described by an equation containing only three independent variables. In addition, a number of novel monomer composition profiles can also be constructed with this approach. The composition of the monomer feed to the reactor can be described by ... [Pg.386]

UOP and Norsk Hydro have jointly developed and demonstrated a new MTO process utilizing a SAPO-34 containing catalyst that provides up to 80% yield of ethylene and propylene at near-complete methanol conversion. Some of the key aspects of the work have included the selection of reactor design for the MTO process and determination of the effects of process conditions on product yield. Evaluation of the suitability of the MTO light olefin product as an olefin polymerization feedstock and demonstration of the stability of the MTO-lOO catalyst have also been determined during the development of this process. [Pg.249]

Sclairtech An advanced version of the Sclair ethylene polymerization process, using a Ziegler-Natta catalyst and multiple reactors. Announced in 1996. By 2005, more than 12 plants had been built or were in design or under construction. Licensed by Nova Chemicals (International). [Pg.322]


See other pages where Polymerization processes reactor design is mentioned: [Pg.278]    [Pg.11]    [Pg.508]    [Pg.504]    [Pg.254]    [Pg.32]    [Pg.18]    [Pg.71]    [Pg.109]    [Pg.149]    [Pg.295]    [Pg.109]    [Pg.112]    [Pg.279]    [Pg.336]    [Pg.300]    [Pg.444]    [Pg.255]    [Pg.234]    [Pg.10]    [Pg.207]    [Pg.173]    [Pg.254]    [Pg.567]    [Pg.18]    [Pg.19]    [Pg.22]    [Pg.154]    [Pg.258]    [Pg.129]   
See also in sourсe #XX -- [ Pg.330 ]




SEARCH



Polymeric design

Polymerization reactor design

Process Reactors

Process reactor designs

© 2024 chempedia.info