Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization incident

Celanese Bayport Marine Terminal June 13, 1998 Methyl Acrylate Tank V-9227 Polymerization Incident Public Information Disclosure, Celanese, Pasadena, Texas, 1999. [Pg.222]

Once a polymerization incident is in progress, there are no known effective mitigation procedures. [Pg.411]

Production of Phenolic Resins K Although the BPF document is specific to phenolic resins its general approach could be used elsewhere. It is perhaps significant that very few phenol-formaldehyde polymerization incidents have been reported over the last few years. [Pg.8]

Reactivity Acrolein is a highly reactive chemical, and contamination of all types must be avoided. Violent polymerization may occur by contamination with either alkaline materials or strong mineral acids. Contamination by low molecular weight amines and pyridines such as a-picoline is especially hazardous because there is an induction period that may conceal the onset of an incident and allow a contaminant to accumulate unnoticed. After the onset of polymeriza tion the temperature can rise precipitously within rninutes. [Pg.128]

The incidence of these defects is best determined by high resolution F nmr (111,112) infrared (113) and laser mass spectrometry (114) are alternative methods. Typical commercial polymers show 3—6 mol % defect content. Polymerization methods have a particularly strong effect on the sequence of these defects. In contrast to suspension polymerized PVDF, emulsion polymerized PVDF forms a higher fraction of head-to-head defects that are not followed by tail-to-tail addition (115,116). Crystallinity and other properties of PVDF or copolymers of VDF are influenced by these defect stmctures (117). [Pg.387]

Polymerization and Spinning Solvent. Dimethyl sulfoxide is used as a solvent for the polymerization of acrylonitrile and other vinyl monomers, eg, methyl methacrylate and styrene (82,83). The low incidence of transfer from the growing chain to DMSO leads to high molecular weights. Copolymerization reactions of acrylonitrile with other vinyl monomers are also mn in DMSO. Monomer mixtures of acrylonitrile, styrene, vinyUdene chloride, methallylsulfonic acid, styrenesulfonic acid, etc, are polymerized in DMSO—water (84). In some cases, the fibers are spun from the reaction solutions into DMSO—water baths. [Pg.112]

The control of chemical reactions (e.g., esterification, sulfonation, nitration, alkylation, polymerization, oxidation, reduction, halogenation) and associated hazards are an essential aspect of chemical manufacture in the CPI. The industries manufacture nearly all their products, such as inorganic, organic, agricultural, polymers, and pharmaceuticals, through the control of reactive chemicals. The reactions that occur are generally without incident. Barton and Nolan [1] examined exothermic runaway incidents and found that the principal causes were ... [Pg.910]

Occasionally, however, it may be impossible to be certain that a piece of equipment is spotlessly clean, especially if it has contained a residual oil or a material that polymerizes. If this is the case, or if there is some doubt about its cleanliness, then the hazards and the necessary precautions should be made known to the workshop or the other company. This can be done by attaching a certificate to the equipment. This certificate is not a work permit. It does not authorize any work but describes the state of the equipment and gives the other company sufficient information to enable it to carry out the repair or modification safely. Before issuing the certificate, the engineer in charge should discuss with the other company the methods it proposes to use. If the problems are complex, a member of the plant staff may have to visit the other company. The following incidents show the need for these precautions. [Pg.23]

Transfer to initiator can be a major complication in polymerizations initiated by diacyl peroxides. The importance of the process typically increases with monomer conversion and the consequent increase in the [initiator] [monomer] ratio.9 105160 162 In BPO initiated S polymerization, transfer to initiator may be lire major chain termination mechanism. For bulk S polymerization with 0.1 M BPO at 60 °C up to 75% of chains are terminated by transfer to initiator or primary radical termination (<75% conversion).7 A further consequence of the high incidence of chain transfer is that high conversion PS formed with BPO initiator tends to have a much narrower molecular weight distribution than that prepared with other initiators (e.g. AIBN) under similar conditions. [Pg.85]

The process is favored by low monomer concentrations as occurs at high conversions and in starved feed polymerizations.307 Theoretical calculations suggest that the incidence of backbiting should be strongly dependent on the tacticity of the penultimate dyad. 08 Double backbiting in VC or VAc polymerization will lead to 2-chloroethyl or 2-acetoxy ethyl branches respectively (as for E in Scheme 4.41 ).302... [Pg.211]

As in the case of PS (Section 8.2.1) polymers formed by living radical polymerization (NMP, ATRP, RAFT) have thermally unstable labile chain ends. Although PMMA can be prepared by NMP, it is made difficult by the incidence of cross disproportionation.42 Thermal elimination, possibly by a homolysis-cross disproportionation mechanism, provides a route to narrow polydispersity macromonomers.43 Chemistries for end group replacement have been devised in the case of polymers formed by NMP (Section 9.3.6), ATRP (Section 9.4) and RAFT (Section 9.5.3). [Pg.420]

I> = (dc/df)//abs where dc/dr is the rate of disappearance of the olefinic double bonds per unit volume and /abs the rate at which the incident light is absorbed per unit volume of the KBr pellet containing the sample. The rates of disappearance of the olefinic double bonds during oligomerization and polymerization were monitored by infrared (IR) spectroscopy. [Pg.136]

The susceptibility of the polymerization of a given monomer to autoacceleration seems to depend primarily on the size of the polymer molecules produced. The high propagation and low termination constants for methyl acrylate as compared to those for other common monomers lead to an unusually large average degree of polymerization (>10 ), and this fact alone seems to account for the incidence of the decrease in A f at very low conversions in this case. [Pg.128]

The degree of branching by transfer with polymer obviously will increase with the conversion since the relative incidence of branching must depend on the ratio of polymer to monomer in the system. To examine the matter from the point of view of reaction rates, let 6 represent the fraction of monomer molecules which have polymerized out of a total of iVo in the system, and let v represent the total number of branches. (At variance with the definition used elsewhere. No is the total number of units polymerized and unpolymerized as well.) The rates of generation of branches and of polymerization can then be written... [Pg.385]

Controlled and sustained drug delivery has recently begun to make an impression in the area of treatment of dental diseases. Many researchers have demonstrated that controlled delivery of antimicrobial agents, such as chlorhexidine [128-130], ofloxacin [131-133], and metronidazole [134], can effectively treat and prevent periodontitis. The incidence of dental caries and formation of plaque can also be reduced by controlled delivery of fluoride [135,136]. Delivery systems used are film-forming solutions [129,130], polymeric inserts [132], implants, and patches. Since dental disease is usually chronic, sustained release of therapeutic agents in the oral cavity would obviously be desirable. [Pg.521]

The parameters K1/ K2/ and K3 are defined by the refractive indices of the crystal and sample and by the incidence angle [32]. If the sample has uniaxial symmetry, only two polarized spectra are necessary to characterize the orientation. If the optical axis is along the plane of the sample, such as for stretched polymer films, only the two s-polarized spectra are needed to determine kz and kx. These are then used to calculate a dichroic ratio or a P2) value with Equation (25) (replacing absorbance with absorption index). In contrast, a uniaxial sample with its optical axis perpendicular to the crystal surface requires the acquisition of spectra with both p- and s-polarizations, but the Z- and X-axes are now equivalent. This approach was used, through dichroic ratio measurements, to monitor the orientation of polymer chains at various depths during the drying of latex [33]. This type of symmetry is often encountered in non-polymeric samples, for instance, in ultrathin films of lipids or self-assembled monolayers. [Pg.310]


See other pages where Polymerization incident is mentioned: [Pg.553]    [Pg.553]    [Pg.696]    [Pg.432]    [Pg.133]    [Pg.736]    [Pg.540]    [Pg.236]    [Pg.455]    [Pg.466]    [Pg.531]    [Pg.535]    [Pg.375]    [Pg.114]    [Pg.137]    [Pg.155]    [Pg.156]    [Pg.220]    [Pg.256]    [Pg.260]    [Pg.267]    [Pg.380]    [Pg.142]    [Pg.355]    [Pg.173]    [Pg.198]    [Pg.398]    [Pg.304]    [Pg.197]    [Pg.203]    [Pg.206]    [Pg.206]    [Pg.207]    [Pg.212]   


SEARCH



© 2024 chempedia.info