Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tail addition

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations from this generalization become more common for polymerizations which are carried out at higher temperatures. Head-to-head addition is also somewhat more abundant in the case of halogenated monomers such as vinyl chloride. The preponderance of head-to-tail additions is understood to arise from a combination of resonance and steric effects. In many cases the ionic or free-radical reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or electron delocalization through the substituent group. Head-to-tail attachment is also sterically favored, since the substituent groups on successive repeat units are separated by a methylene... [Pg.23]

The incidence of these defects is best determined by high resolution F nmr (111,112) infrared (113) and laser mass spectrometry (114) are alternative methods. Typical commercial polymers show 3—6 mol % defect content. Polymerization methods have a particularly strong effect on the sequence of these defects. In contrast to suspension polymerized PVDF, emulsion polymerized PVDF forms a higher fraction of head-to-head defects that are not followed by tail-to-tail addition (115,116). Crystallinity and other properties of PVDF or copolymers of VDF are influenced by these defect stmctures (117). [Pg.387]

These reactions are usehil for the preparation of homogeneous difunctional initiators from a-methylstyrene in polar solvents such as tetrahydrofuran. Because of the low ceiling temperature of a-methylstyrene (T = 61° C) (26), dimers or tetramers can be formed depending on the alkaU metal system, temperature, and concentration. Thus the reduction of a-methylstyrene by sodium potassium alloy produces the dimeric dianionic initiators in THF (27), while the reduction with sodium metal forms the tetrameric dianions as the main products (28). The stmctures of the dimer and tetramer correspond to initial tail-to-tail addition to form the most stable dianion as shown in equations 6 and 7 (28). [Pg.237]

Propagation occurs by head-to-tail addition of monomer ... [Pg.269]

The head-to-tail addition mode produces the most stable intermediate. For example, styrene polymerization mainly produces the head-to-tail intermediate ... [Pg.305]

Free radical polymers may terminate when two propagating chains combine. In this case, the tail-to-tail addition mode is most likely. [Pg.306]

We shall consider now the various degrees of order which characterize polymeric molecules. The addition of a monomeric unit to a growing chain may take place in more than one way. In the case of a vinyl or vinylidine monomer, i.e., CH2—CHA or CH2—CAB, head-to-head or head-to-tail addition may occur. In most cases the head-to-tail addition has a vastly greater probability than the head-to-head or tail-to-tail addition, and thus the latter is responsible only for small imperfections in the chain structure. Studies of head-to-tail and head-to-head additions were vigorously pursued in the 30 s and 40 s, and a good account of this work is available, for example, in Flory s recent monograph.15... [Pg.164]

In the period 1910-1950 many contributed to the development of free-radical polymerization.1 The basic mechanism as we know it today (Scheme 1.1), was laid out in the 1940s and 50s.7 9 The essential features of this mechanism are initiation and propagation steps, which involve radicals adding to the less substituted end of the double bond ("tail addition"), and a termination step, which involves disproportionation or combination between two growing chains. [Pg.2]

With few exceptions, radicals are observed to add preferentially to the less highly substituted end of unsymmetrically substituted olefins (i.e. give predominantly tail addition - Scheme l.l). [Pg.16]

To this day some texts put forward product stability as the sole explanation for preferential tail addition,... [Pg.16]

For olefins with Ji-substitucnts, whether electron-withdrawing or electron-donating, both the HOMO and LUMO have the higher coefficient 021 the carbon atom remote from the substituent. A predominance of tail addition is expected as a consequence. However, for non-conjugated substituents, or those with lone pairs (e.g. the halo-olefins), the HOMO and LUMO are polarized in opposite directions. This may result in head addition being preferred in the case of a nucleophilic radical interacting with such an olefin. Thus, the data for attack of alkyl and fluoroalkyl radicals on the fluoro-olefins (Table 1.2) have been rationalized in terms of FMO theory.16 Where the radical and olefin both have near neutral philicity, the situation is less clear.21... [Pg.27]

First consider the interaction of radicals with monomers. Some behave as described in the classic texts and give tail addition as the only detectable pathway (Scheme 3.3). However, tail addition to the double bond is only one of the pathways whereby a radical may react with a monomer. The outcome of the reaction is critically dependent on the structure of both radical and monomer. [Pg.51]

For reactions with S, specificity is found to decrease in the series cyanoisopropyl mcthyl Fbutoxy>phcnyl>bcnzoyloxy. Cyanoisopropyl (Scheme 3.3),7 f-bntoxy and methyl radicals give exclusively tail addition. Phenyl radicals afford tail addition and ca l% aromatic substitution. Benzoyloxy radicals give tail addition, head addition, and aromatic substitution (Scheme 3.4). ... [Pg.52]

Cyanoisopropyl radicals generally show a high degree of specificity in reactions with unsaturated substrates. They react with most monomers (c.g. S, MMA) exclusively by tail addition (Scheme 3.4). However, Bcvington et al.11 indicated that cyanoisopropyl radicals give ca 10% head addition with VAc at 60 °C and that the proportion of head addition increases with increasing temperature. [Pg.116]

Aryl radicals are produced in the decomposition of alkylazobenzenes and diazonium salts, and by f)-scission of aroyloxy radicals (Scheme 3.73). Aryl radicals have been reported to react by aromatic subsitution (e.g. of Sh) or abstract hydrogen (e.g. from MMA10) in competition with adding to a monomer double bond. However, these processes typically account for <1% of the total. The degree of specificity for tail vs head addition is also very high. Significant head addition has been observed only where tail addition is retarded by sleric factors e.g. methyl crotonate10 and -substituted methyl vinyl ketones 79, 84). [Pg.117]

The pathways whereby oxygen-centered radicals interact with monomers show marked dependence on the structure of the radical (Table 3.8). For example, with MMA the proportion of tail addition varies from 66% for f-butoxy to 99% for isopropoxycarbonyloxy radical. The reactions of oxygen-centered radicals are discussed in detail in the following sections. [Pg.118]

Grant et a/.397 examined the reactions of hydroxy radicals with a range of vinyl and a-methylvinyl monomers in organic media. Hydroxy radicals on reaction with AMS give significant yields of products from head addition, abstraction and aromatic substitution (Table 3.8) even though resonance and steric factors combine to favor "normal tail addition. However, it is notable that the extents of abstraction (with AMS and MMA) arc less than obtained with t-butoxy radicals and the amounts of head addition (with MMA and S) are no greater than those seen with benzoyloxy radicals under similar conditions. It is clear that there is no direct correlation between reaclion rale and low specificity. [Pg.128]

It is established that the initial reaction involves predominantly tail addition to monomer.473 There is no evidence that abstraction competes with addition. It should be noted that the addition of arenethiyl radicals to double bonds is readily reversible. [Pg.132]

The rate of oxidation/reduction of radicals is strongly dependent on radical structure. Transition metal reductants (e.g. TiMt) show selectivity for electrophilic radicals (e.g. those derived by tail addition to acrylic monomers or alkyl vinyl ketones - Scheme 3.89) >7y while oxidants (CuM, Fe,M) show selectivity for nucleophilic radicals (e.g. those derived from addition to S - Scheme 3,90).18 A consequence of this specificity is that the various products from the reaction of an initiating radical with monomers will not all be trapped with equal efficiency and complex mixtures can arise. [Pg.136]

NMR methods can be applied to give quantitative determination of initiator-derived and other end groups and provide a wealth of information on the polymerization process. They provide a chemical probe of the detailed initiation mechanism and a greater understanding of polymer properties. The main advantage of NMR methods over alternative techniques for initiator residue detection is that NMR signals (in particular nC NMR) are extremely sensitive to the structural environment of the initiator residue. This means that functionality formed by tail addition, head addition, transfer to initiator or primary radical termination, and various initiator-derived byproducts can be distinguished. [Pg.146]

For mono- and 1,1-disubstituted monomers, steric, polar, resonance, and bond-strength terms (see Section 2.3) usually combine to favor a preponderance of tail addition Le. an almost completely isoregic structure. Fiowever, the occurrence of... [Pg.176]

The tendency for radicals to give tail addition means that a head-to-head linkage will, most likely, be followed by a tail-to-tail linkage (Scheme 4.5). Thus, head-to-head linkages formed by an "abnormal" addition reaction are chemically distinct from those formed in termination by combination of propagating radicals (Scheme 4.6). [Pg.177]

Even allowing for the above-mentioned complication, the number of head-to-head linkages is unlikely to equate exactly with the number of tail-to-tail linkages. The radicals formed by tail addition (T ) and those formed by head addition (H ) arc likely to have different reactivities. [Pg.177]

Table 4.2 Temperature Dependence of Head V.V Tail Addition for Fluoro-olefin... Table 4.2 Temperature Dependence of Head V.V Tail Addition for Fluoro-olefin...
The very high levels of head addition and the substituent effects reported in these studies are inconsistent with expectations based on knowledge of the reactions of small radicals (see 2.3) and are at odds with structures formed in the intermolecular step of cyclopolymerization of diallyl monomers (see 4.4.1.1) where overwhelming tail addition is seen. [Pg.182]

When used in conjunction with unsymmetrical dienes with substituents in the 2-position, the term tail addition has been used to refer to addition to the methylene remote from the substituent. Head addition then refers to addition to... [Pg.183]

Propagation in copolymerization could, in principle, be discussed under the same headings as used for the discussion of propagation in Chapter 4. However, remarkably little information is currently available on the tacticity, extents of head vs tail addition, and propensity for rearrangement in copolymerization. [Pg.336]


See other pages where Tail addition is mentioned: [Pg.133]    [Pg.387]    [Pg.630]    [Pg.631]    [Pg.158]    [Pg.4]    [Pg.5]    [Pg.18]    [Pg.18]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.52]    [Pg.52]    [Pg.52]    [Pg.126]    [Pg.146]    [Pg.176]    [Pg.179]    [Pg.179]    [Pg.180]    [Pg.183]    [Pg.194]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Addition-elimination mechanism for head-to-tail coupling

Head-tail addition

Regiosequence Isomerism - Head vs Tail Addition

Tail addition definition

© 2024 chempedia.info