Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer resin rubber, natural

Almost all of the cyclohexane that is produced in concentrated form is used as a raw material in the first step of nylon-6 and nylon-6,6 manufacture. Cyclohexane also is an excellent solvent for cellulose ethers, resins, waxes (qv), fats, oils, bitumen, and mbber (see Cellulose ethers Resins, natural Fats AND FATTY OILS Rubber, NATURAL). When used as a solvent, it usually is in admixture with other hydrocarbons. However, a small amount is used as a reaction diluent in polymer processes. [Pg.409]

The mechanical degradation and production of macroradicals can also be performed by mastication of polymers brought into a rubbery state by admixture with monomer several monomer-polymer systems were examined (10, 11). This technique was for instance studied for the cold mastication of natural rubber or butadiene copolymers in the presence of a vinyl monomer (13, 31, 52). The polymerization of methyl methacrylate or styrene during the mastication of natural rubber has yielded copolymers which remain soluble up to complete polymerization vinyl acetate, which could not produce graft copolymers by the chain transfer technique, failed also in this mastication procedure. Block and graft copolymers were also prepared by cross-addition of the macroradicals generated by the cold milling and mastication of mixtures of various elastomers and polymers, such as natural rubber/polymethyl methacrylate (74), natural rubber/butadiene-styrene rubbers (76) and even phenol-formaldehyde resin/nitrile rubber (125). [Pg.194]

Bonding agents are applied as one or two coat systems. The primer coating is formulated to have good adhesion to metal and consists of polar materials dissolved in suitable solvents. The cover coat may consist of a mixture of several polymers, usually of intermediate polarity and rubber like, rather than resinous in nature. The formulation involves considerable knowledge and is very complex in nature. [Pg.53]

Plastics are not, as many people believe, new materials. Their origin can be traced to 1847 when Shonbein produced the first thermoplastic resin, celluloid, by reaction of cellulose with nitric acid. However, the general acceptance and commercialization of plastics began during the Second World War when natural polymers, such as natural rubber, were in short supply. Thus, polystyrene was developed in 1937, low density polyethylene in 1941, whereas other commodity plastics such as high density polyethylene and polypropylene were introduced in 1957. [Pg.2]

In view of the wide application of Py—GC in industry and research, the development of techniques and equipment for automatic analysis by this method is of great practical interest. An automatic Py—GC system was developed by Coulter and Thompson [69] for Curie-type cells with a filament for specific application in the tyre industry. A typical analysis involves the identification and determination of polymers in a tyre material sample. The material of a tyre is essentially a mixture of polymers, most often natural rubber (polyisoprene), synthetic polyisoprene, polybutadiene and butadiene-styrene copolymer. A tube is normally made of a material based on butyl rubber and a copolymer of isobutylene with small amounts of isoprene. In addition to the above ingredients, the material contains another ten to twelve, such as sulphur, zinc oxide, carbon black, mineral oil, pine pitch, resins, antioxidants, accelerators and stearic acid. In analysing very small samples of the tyre material, the chemist must usually answer the following question on the basis of which polymers is the tyre made and what is their ratio The problem is not made easier by the fact that cured rubber is not soluble in any solvent. [Pg.98]

As natural rubber is a product of nature, its properties are determined by the biochemical pathway by which the polymer is synthesized in the plant. In the case of natural rubber the polymerization process cannot be tailored like that of synthetic rubbers. The only option to modify natural rubber is after it has been harvested from the tree. The important modified forms of natural rubber include hydrogenated natural rubber, chlorinated natural rubber, hydro-halogenated natural rubber, cyclized natural rubber, depolymerised liquid natural rubber, resin modified natural rubber, poly(methyl methacrylate) grafted natural rubber, poly(styrene) grafted natural rubber, and epoxidized natural rubber [33,34]. Thermoplastic natural rubber prepared by blending natural rubber and PP is considered as a physically modified form of natural rubber. [Pg.424]

The terms plastic, polymer, resin, elastomer, and RP are somewhat synonymous. Plastic and resin are interchangeable. Worldwide the term preferred is plastic for URP and resin for RP. Polymer denotes the basic material. Whereas plastic pertains to polymers or resins (as well as elastomers, RPs, etc.) containing additives, fillers, and/or reinforcements. An elastomer is a rubber like material (natural or synthetic). RPs (also called plastic composites) are plastics with reinforcing additives such as fibers and whiskers, added principally to increase the product s mechanical properties. [Pg.110]

Preformed nanofillers (and impact modifiers, as well) will be offered in masterbatch forms and diluted with suitable resins upon request. Further on, great efforts will be devoted to generate novel nanofillers, like graphite sheets, CNT-clay hybrids, coiled CNTs. The potential of nanofillers of natural origin, like cellulose whiskers, will be checked in various polymers, including rubbers. In respect of nanofillers, the RfeD work will focus on their possible functional properties ( smart nanoparticles). [Pg.411]

Two important parameters in the formulation of pressure sensitive adhesives are tack and hold, which is the ability to resist creep under deadload. As noted, butyl and polyisobutylene are inherently tacky polymers. This tack can be enhanced with a wide variety of resins and other tackifiers. The hold or cohesive strength is low compared to some other pressure sensitive adhesive polymers, such as natural rubber, but can be increased if required by (1) incorporation of high molecular weight PIB or natural rubber, (2) the choice of the other ingredients, particularly resins and fillers, and (3) the partial or preferential curing techniques noted previously. The poly isobutylene polymers are primarily used in label pressure sensitive adhesives and in certain tapes where high cohesive strength is not necessary. [Pg.196]

The early hot melt adhesives were not strictly definable as rubber-based adhesives. Most rubber polymers such as natural rubber and random SBR are of such molecular weight and structure that they do not melt readily to a workable coating consistency at a temperature below which thermal degradation and decomposition take place. Certain synthetic polymers, however, lend themselves to the formulation of a wide range of hot melt adhesive compositions. Polyamide and polyester resins, ethylene-vinyl acetate (EVA) copolymers, ethylene-ethyl acrylate (EEA) copolymers, low molecular weight polyethylene and amorphous polypropylene, and certain vinyl ethers have found application in hot melt adhesives. These adhesives have found wide use in packaging, industrial, and construction applications. [Pg.561]

The latex of the Sapota achras yields a thermoplastic material, chicle, consisting of about 17.4% hydrocarbon, 40% acetone soluble resin and 35% occluded water. The hydrocarbon appears to contain both trans- and c/s-polyisoprene. Although originally introduced as gutta pereha and natural rubber substitutes, deresinated chicle has become important as the base for chewing gum. Like other polyisoprenes, it is meeting competition from synthetic polymers. [Pg.866]

Standard-grade PSAs are usually made from styrene-butadiene rubber (SBR), natural rubber, or blends thereof in solution. In addition to rubbers, polyacrylates, polymethylacrylates, polyfvinyl ethers), polychloroprene, and polyisobutenes are often components of the system ([198], pp. 25-39). These are often modified with phenolic resins, or resins based on rosin esters, coumarones, or hydrocarbons. Phenolic resins improve temperature resistance, solvent resistance, and cohesive strength of PSA ([196], pp. 276-278). Antioxidants and tackifiers are also essential components. Sometimes the tackifier will be a lower molecular weight component of the high polymer system. The phenolic resins may be standard resoles, alkyl phenolics, or terpene-phenolic systems ([198], pp. 25-39 and 80-81). Pressure-sensitive dispersions are normally comprised of special acrylic ester copolymers with resin modifiers. The high polymer base used determines adhesive and cohesive properties of the PSA. [Pg.933]


See other pages where Polymer resin rubber, natural is mentioned: [Pg.134]    [Pg.933]    [Pg.134]    [Pg.1104]    [Pg.1121]    [Pg.933]    [Pg.707]    [Pg.364]    [Pg.3673]    [Pg.134]    [Pg.202]    [Pg.76]    [Pg.512]    [Pg.125]    [Pg.408]    [Pg.241]    [Pg.68]    [Pg.640]    [Pg.4]    [Pg.114]    [Pg.242]    [Pg.1001]    [Pg.443]    [Pg.361]    [Pg.452]    [Pg.476]    [Pg.484]    [Pg.653]    [Pg.677]    [Pg.317]    [Pg.835]    [Pg.301]    [Pg.3]    [Pg.18]   


SEARCH



Natural polymers

Polymer resin

Polymers natural rubber

Polymers rubber

© 2024 chempedia.info