Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer continued latexes

Ideally one would like a continuous reactor system to operate indefinitely at the desired steady-state. Unfortunately, a number of factors can cause shorter runs. Formation of wall polymer and latex flocculation is one such problem. This phenomenon can reduce reactor performance (for example, loss of heat transfer), lower product quality, and shorten run time. [Pg.11]

Polymer production technology involves a diversity of products produced from even a single monomer. Polymerizations are carried out in a variety of reactor types batch, semi-batch and continuous flow stirred tank or tubular reactors. However, very few commercial or fundamental polymer or latex properties can be measured on-line. Therefore, if one aims to develop and apply control strategies to achieve desired polymer (or latex) property trajectories under such a variety of conditions, it is important to have a valid mechanistic model capable of predicting at least the major effects of the process variables. [Pg.219]

A polymer called latex, prepared from a monomer that contains organic groups, is deposited as small spheres (0.1—0.3 pm in diameter) on the support to form a continuous film about 1—2 pm thick. The support is made of silica microspheres or spheres of polystyrene of about 25-50 pm diameter (Fig. 4.4). [Pg.68]

Continuous emulsion polymerization processes are presently employed for large scale production of synthetic rubber latexes. Owing to the recent growth of the market for polymers in latex form, this process is becoming more and more important also in the production of a number of other synthetic latexes, and hence, the necessity of the knowledge of continuous emulsion polymerization kinetics has recently increased. Nevertheless/ the study of continuous emulsion polymerization kinetics hasf to datef received comparatively scant attention in contrast to batch kinetics/ and very little published work is available at present/ especially as to the reactor optimization of continuous emulsion polymerization processes. For the theoretical optimization of continuous emulsion polymerization reactors/ it is desirable to understand the kinetics of emulsion polymerization as deeply and quantitatively as possible. [Pg.125]

The control and reproducibility of particle size and particle size distribution is important to the quality of acrylic and styrene-acrylic latex products. Particle size has large effects on latex viscosity and the rheology of formulated products and may also exert subtle effects on the end-use peiformaiKe properties. The particle size is controlled primarily by the choice and amount of surfactant, or by the use of seed latexes. A recoit article [32] addresses the use of surfactants to control particle size in semi-continuous acrylic polymmzations. Many surfactants are reconunended by surfactant manuhicturras for the preparation of acrylic and styrene-acrylic latexes [33]. Sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sulfosuccinates and the aUtylphonl ethoxylates ate typical. The patent literature contmns many discussions of the use of single [34] or multiple [3S] polymer seed latexes to control particle size. [Pg.326]

Organoclays are also used in printing inks for rheological control, in oil-based paints and in oil-continuous latex polymers. In addition, they are used to thicken nail polish and for fabric conditioning, where in the latter the organoclays provide a carrier for the (di(hydrogenated tallowalkyl)dimethylammonium chloride) (DHTDMAC) fabric softener, and provide additional softening due to the lubricity of the clays. [Pg.344]

As polymerization continues, however, the micelles become larger and larger, and Anally change into spherical polymer particles (latex particles). These latex particles can also contain dissolved monomer. As monomer is consumed in polymerization, the number of large monomer droplets steadily... [Pg.239]

Modification of the cementitious binder with poiymers The use of polymer dispersions (latex) as an additive to cementitious binders is well established. The polymer particles are smaller by orders of magnitude than the cement grains, and they coalesce to form a continuous film. The use of water dispersed acrylics and PVA polymers (which can more readily be placed at the fibre interface and later on coalesce into a film which could be interlaced within the gel particles) resulted in a fine interfacial structure with much higher bond strength. [Pg.63]

Emulsion polymerization also has the advantages of good heat transfer and low viscosity, which follow from the presence of the aqueous phase. The resulting aqueous dispersion of polymer is called a latex. The polymer can be subsequently separated from the aqueous portion of the latex or the latter can be used directly in eventual appUcations. For example, in coatings applications-such as paints, paper coatings, floor pohshes-soft polymer particles coalesce into a continuous film with the evaporation of water after the latex has been applied to the substrate. [Pg.403]

L tex Foa.m Rubber. Latex foam mbber was the first ceUular polymer to be produced by frothing. (/) A gas is dispersed in a suitable latex 2) the mbber latex particles are caused to coalesce and form a continuous mbber phase in the water phase (7) the aqueous soap film breaks owing to... [Pg.407]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Waterproof Finishes. Waterproofing results from coating a fabric and filling the pores with film-forming material such as varnish, mbber, nitroceUulose, wax, tar, or plastic. The materials may be appHed as hot melts, eg, waxes or some polymers, as solvent solutions, or as aqueous latexes. The continuity of the film provides the water resistance. Except for tents, tarpauHns, and covers, coated fabrics have been largely replaced by plastics, and by fabrics treated with water and oU repeUents that do not reduce permeabUity to air and water vapor. Eabrics are also commonly laminated to films, such that the total stmeture is waterproof (15), or in some cases water-resistant but breathable (16). [Pg.307]

There are limitations to the appHcabiHty of exterior latex house paints providing a small continuing market for oil or alkyd exterior house paints. Because film formation from latex paints occurs by coalescence, there is a temperature limit, below which the paint should not be appHed. This temperature can be varied by choice of the T of the latex polymer and the amount of coalesciag agent ia the formula. Ia the United States, most latex paints are formulated for appHcation at temperatures above 5—7°C. If painting must be done when the temperature is below 5—7°C, oil or alkyd paint is preferable. [Pg.351]

The aqueous emulsion polymerization can be conducted by a batch, semibatch, or continuous process (Fig. 5). In a simple batch process, all the ingredients are charged to the reactor, the temperature is raised, and the polymerization is mn to completion. In a semibatch process, all ingredients are charged except the monomers. The monomers are then added continuously to maintain a constant pressure. Once the desired soflds level of the latex is reached (typically 20—40% soflds) the monomer stream is halted, excess monomer is recovered and the latex is isolated. In a continuous process (37), feeding of the ingredients and removal of the polymer latex is continuous through a pressure control or rehef valve. [Pg.510]

Alternative processes for polymer isolation have involved direct dmm drying of latex (84), extmsion isolation of coagulated cmmb (85), and precipitation/drying or spray-drying of the mbber as a powder (86). The powder can be processed directly in continuous compounding equipment (87). The manufacture and use of powdered CR has been reviewed (88). [Pg.541]

The molecular weight of the polymers is controlled by temperature (for the homopolymer), or by the addition of organic acid anhydrides and acid hahdes (37). Although most of the product is made in the first reactor, the background monomer continues to react in a second reactor which is placed in series with the first. When the reaction is complete, a hindered phenoHc or metal antioxidant is added to improve shelf life and processibiUty. The catalyst is deactivated during steam coagulation, which also removes solvent and unreacted monomer. The cmmbs of water-swoUen product are dried and pressed into bale form. This is the only form in which the mbber is commercially available. The mbber may be converted into a latex form, but this has not found commercial appHcation (38). [Pg.555]

Emulsions Emulsions have particles of 0.05 to 5.0 [Lm diameter. The product is a stable latex, rather than a filterable suspension. Some latexes are usable directly, as in paints, or they may be coagulated by various means to produce massive polymers. Figures 23-23d and 23-23 show bead and emulsion processes for vinyl chloride. Continuous emulsion polymerization of outadiene-styrene rubber is done in a CSTR battery with a residence time of 8 to 12 h. Batch treating of emulsions also is widely used. [Pg.2102]

In suspension processes the fate of the continuous liquid phase and the associated control of the stabilisation and destabilisation of the system are the most important considerations. Many polymers occur in latex form, i.e. as polymer particles of diameter of the order of 1 p.m suspended in a liquid, usually aqueous, medium. Such latices are widely used to produce latex foams, elastic thread, dipped latex rubber goods, emulsion paints and paper additives. In the manufacture and use of such products it is important that premature destabilisation of the latex does not occur but that such destabilisation occurs in a controlled and appropriate manner at the relevant stage in processing. Such control of stability is based on the general precepts of colloid science. As with products from solvent processes diffusion distances for the liquid phase must be kept short furthermore, care has to be taken that the drying rates are not such that a skin of very low permeability is formed whilst there remains undesirable liquid in the mass of the polymer. For most applications it is desirable that destabilisation leads to a coherent film (or spongy mass in the case of foams) of polymers. To achieve this the of the latex compound should not be above ambient temperature so that at such temperatures intermolecular diffusion of the polymer molecules can occur. [Pg.181]


See other pages where Polymer continued latexes is mentioned: [Pg.335]    [Pg.520]    [Pg.547]    [Pg.94]    [Pg.7]    [Pg.299]    [Pg.301]    [Pg.638]    [Pg.402]    [Pg.426]    [Pg.274]    [Pg.350]    [Pg.148]    [Pg.660]    [Pg.228]    [Pg.65]    [Pg.21]    [Pg.28]    [Pg.29]    [Pg.288]    [Pg.59]    [Pg.541]    [Pg.313]    [Pg.279]    [Pg.495]    [Pg.496]    [Pg.470]    [Pg.338]    [Pg.263]    [Pg.541]    [Pg.351]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Latex polymers continuous phase

Polymer (continued

© 2024 chempedia.info