Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer blends phase separation thermodynamics

Most polymer blends phase-separate with LCST thus the miscibility region stretches from the melting point or Tg up to the binodal while the phase-separated region exists above the spinodal temperature, Ts [1, 212]. Within the region between binodal and spinodal the system is metastable, characterized by strong interrelation between the rheology and thermodynamics [211, 213-215]. [Pg.52]

The spontaneous mixing of the two polymers will transpire at a rate which reflects the degree of miscibility of the system. As X approaches the critical value for phase separation, "thermodynamic slowing down" of the interdiffusion will occur [12]. The rate of increase of the scattering contrast reflects the proximity of the system to criticality, as well as the strong composition dependence of the glass transition temperature of the blend. Extraction of a value for either the self diffusion constants [13,14] or the interaction parameter is not feasible from the presently available data. [Pg.307]

While miscible blends have attracted considerable interest due to the thermodynamic implications and commercial relevance, phase separated blends have had a prominent role in polymer blend technology. While mechanical compatibility is assured in miscible blends, phase separated blends can often achieve property advantages not capable with single phase blends. (Mechanical... [Pg.1169]

When polymers undergo phase separation in thin films, the kinetic and thermodynamic effects are expected to be pronounced. The phase separation process can be controlled to effect desired morphologies. Under suitable conditions a film deposition process can lead to pattern replication. Demixing of polymer blends can lead to structure formation. The phase separation process can be characterized by the binodal and spinodal curves. UCST is the upper critical solution temperature, which is the temperature above which the blend constituents are completely miscible in each other in all proportions. LUST behavior is not found as often in systems other than among polymers. LUST is the lower critical solution temperature. This is the... [Pg.153]

When polymers undergo phase separation in thin films, the kinetic and thermodynamic effects are expected to be pronounced. Phase morphology with a single characteristic length scale can be synthesized by quenching a partially miscible polymer blend below the critical temperature of demixing. [Pg.163]

Another phenomenon which affects microstructure of polymers is phase separation. Phase separation is commonly observed in polymer blends and in copolymers. The driving force of phase separation is the immiscibility of the components. Thus the thermodynamic interaction of the components determines the phase separation process and the resulting microstructures. [Pg.4]

There have been several miscible high temperature polymer pairs defined in the literature. Several of these pairs are miscible from solution but are immiscible when processing is attempted in the melt state. These results indicate that the blends phase separate when heated above their glass transition temperature. This further shows that kinetic factors as well as thermodynamic factors are important in the observed miscibility. Also, the role of the solvent in the observed miscibility needs to be better understood. One of the current technical challenges is to widen the temperature range between the glass transition temperature of the blend and its phase separation temperature, to allow miscible blends to be processed in the melt state. [Pg.5]

Compatibility. Clear definition of compatibility is rather difficult. Compatibility has been defined as the ability of two or more materials to exist in close and permanent association for an indefinite period without phase separation and without adverse effect of one on the other [28]. On the other hand, compatibility is easily recognized in solvent-borne adhesives as a homogeneous blend of materials without phase separation. Normally, compatibility is understood as a clear transparent mixture of a resin with a given polymer. But, compatibility is a more complex thermodynamic phenomenon which can be evaluated from specific... [Pg.617]

The flow behavior of the polymer blends is quite complex, influenced by the equilibrium thermodynamic, dynamics of phase separation, morphology, and flow geometry [2]. The flow properties of a two phase blend of incompatible polymers are determined by the properties of the component, that is the continuous phase while adding a low-viscosity component to a high-viscosity component melt. As long as the latter forms a continuous phase, the viscosity of the blend remains high. As soon as the phase inversion [2] occurs, the viscosity of the blend falls sharply, even with a relatively low content of low-viscosity component. Therefore, the S-shaped concentration dependence of the viscosity of blend of incompatible polymers is an indication of phase inversion. The temperature dependence of the viscosity of blends is determined by the viscous flow of the dispersion medium, which is affected by the presence of a second component. [Pg.611]

The term compatibility is used extensively in the blend literature and is used synonymously with the term miscibility in a thermodynamic sense. Compatible polymers are polymer mixtures that do not exhibit gross symptoms of phase separation when blended or polymer mixtures that have desirable chemical properties when blended. However, in a technological sense, the former is used to characterize the ease of fabrication or the properties of the two polymers in the blend [3-5]. [Pg.634]

In a fundamental sense, the miscibility, adhesion, interfacial energies, and morphology developed are all thermodynamically interrelated in a complex way to the interaction forces between the polymers. Miscibility of a polymer blend containing two polymers depends on the mutual solubility of the polymeric components. The blend is termed compatible when the solubility parameter of the two components are close to each other and show a single-phase transition temperature. However, most polymer pairs tend to be immiscible due to differences in their viscoelastic properties, surface-tensions, and intermolecular interactions. According to the terminology, the polymer pairs are incompatible and show separate glass transitions. For many purposes, miscibility in polymer blends is neither required nor de-... [Pg.649]

The information available on aqueous polymer blends is qualitative in nature because of the lack of a suitable theory to interpret the experimental observations. Mixed gels can be comprised of an interpenetrating network, a coupled network (as discussed above), or a phase-separated network [2]. The latter is the most common as the blends have a tendency to form two phases during gelation. In such cases the miscibility and thermodynamic stability have to be empirically investigated and proper conditions for miscible blends identified. This involves a phase diagram study as is described in [3]. [Pg.54]

Similar to other raw materials, e.g., metals, it is principally possible to vary the properties of macromolecular substances by mixing two or more different polymers. Though, one has to pay attention to the fact that in most cases phase-separated, i.e., heterogeneous products are obtained by mixing macromolecules. These polymer blends consist of a continuous phase (matrix) in which a discontinuous (dispersed) phase in the form of more or less regularly shaped particles is included. This phenomenon can be explained thermodynamically ... [Pg.362]

Many polymer blends or block polymer melts separate microscopically into complex meso-scale structures. It is a challenge to predict the multiscale structure of polymer systems including phase diagram, morphology evolution of micro-phase separation, density and composition profiles, and molecular conformations in the interfacial region between different phases. The formation mechanism of micro-phase structures for polymer blends or block copolymers essentially roots in a delicate balance between entropic and enthalpic contributions to the Helmholtz energy. Therefore, it is the key to establish a molecular thermodynamic model of the Helmholtz energy considered for those complex meso-scale structures. In this paper, we introduced a theoretical method based on a lattice model developed in this laboratory to study the multi-scale structure of polymer systems. First, a molecular thermodynamic model for uniform polymer system is presented. This model can... [Pg.210]

Exclusively mechanically interlocked linear polymer blends, typically, are not thermodynamically phase stable. Given sufficient thermal energy (Tuse>Tg), molecular motion will cause disentanglement of the chains and demixing to occur. To avoid phase separation, crosslinking of one or both components results in the formation of a semi-IPN or full-IPN, respectively. Crosslinking effectively slows or stops polymer molecular diffusion and halts the phase decomposition process. [Pg.113]

This article reviews the phase behavior of polymer blends with special emphasis on blends of random copolymers. Thermodynamic issues are considered and then experimental results on miscibility and phase separation are summarized. Section 3 deals with characteristic features of both the liquid-liquid phase separation process and the reverse phenomenon of phase dissolution in blends. This also involves morphology control by definite phase decomposition. In Sect. 4 attention will be focused on flow-induced phase changes in polymer blends. Experimental results and theoretical approaches are outlined. [Pg.31]

Phase dissolution in polymer blends. The reverse process of phase separation is phase dissolution. Without loss of general validity, one may assume again that blends display LCST behavior. The primary objective is to study the kinetics of isothermal phase dissolution of phase-separated structures after a rapid temperature-jump from the two-phase region into the one-phase region below the lower critical solution temperature. Hence, phase-separated structures are dissolved by a continuous descent of the thermodynamic driving force responsible for the phase separation. The theory of phase separation may also be used to discuss the dynamics of phase dissolution. However, unlike the case of phase separation, the linearized theory now describes the late stage of phase dissolution where concentration gradients are sufficiently small. In the context of the Cahn theory, it follows for the decay rate R(q) of Eq. (29) [74]... [Pg.60]

This growing demand for polymer blends has generated a need for a better understanding of the thermodynamics of miscibility and phase separation in polymer systems. This in turn has generated tremendous interest in techniques that can be used to characterize the thermodynamics of polymer-polymer systems. [Pg.108]


See other pages where Polymer blends phase separation thermodynamics is mentioned: [Pg.63]    [Pg.70]    [Pg.1463]    [Pg.298]    [Pg.248]    [Pg.408]    [Pg.411]    [Pg.277]    [Pg.633]    [Pg.649]    [Pg.654]    [Pg.361]    [Pg.389]    [Pg.147]    [Pg.231]    [Pg.244]    [Pg.299]    [Pg.408]    [Pg.411]    [Pg.277]    [Pg.22]    [Pg.506]    [Pg.2]    [Pg.33]    [Pg.89]    [Pg.234]    [Pg.433]    [Pg.407]    [Pg.90]    [Pg.328]    [Pg.361]   


SEARCH



Blends phase-separated

Phase separation blends

Phase separation thermodynamics

Phase separation, polymers

Polymer blends thermodynamics

Polymer separations

Polymer separators

Separation thermodynamics

Thermodynamic phase

Thermodynamics polymers

Thermodynamics, polymer phase separations

© 2024 chempedia.info