Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exclusion mechanism

There is increasing interest in copolymer systems, which, due to their chemical heterogeneity, may require very complex eluent systems in order to dissolve the sample and ensure that the separation ensues hy a pure size exclusion mechanism. In these examples, the PLgel is also compatible with eluent systems containing mixed solvents of different polarity (including water as a cosolvent up to 10% hy volume) and in organic solvents modified with acids or bases (e.g., acetic or formic acid, triethanolamine) as it is stable in the pH range of 1-14. [Pg.359]

The result of this equation describes the quality of the separation on the basis of an ideal size exclusion mechanism with a given pore volume distribution. The quality of the packing is deliberately excluded from this consideration. This parameter should be measured separately and judged by the plate number. The ASTM standard method for HPSEC of polystyrene (4) contains the following equation for resolution (R,) ... [Pg.437]

In the classical model of the size exclusion mechanism this difference stands for the effective pore volume of the separating model. Any elution of samples or fractions outside this interval always means a perturbation by a different mechanism. Such conditions have to be avoided. It is not possible to expand this elution difference A significantly for a given column. For this reason, GPC column sets are considerably longer than LG columns for other mechanisms. [Pg.437]

In SEC, universal calibration is often utilized to characterize a molecular weight distribution. For a universal calibration curve, one must determine the product of log(intrinsic viscosity molecular weight), or log([7j] M). The universal calibration method originally described by Benoit et al. (9) employs the hydro-dynamic radius or volume, the product of [tj] M as the separation parameter. The calibration curves for a variety of polymers will converge toward a single curve when plotted as log([7j] M) versus elution volume (VJ, rather than plotted the conventional way as log(M) versus V, (5). Universal calibration behavior is highly dependent on the absence of any secondary separation effects. Most failures of universal calibration are normally due to the absence of a pure size exclusion mechanism. [Pg.565]

Since the preparation of the PEO and PVP silicas was carried out under the circumstances corresponding to the plateau part of isotherms, it obviously led to tailed structures of the stationary phases. Their inherent repellency ensured the size-exclusion mechanism for chromatography of viruses and large proteins. [Pg.143]

In which the ratio m/n is close to 3. The silane was produced by free radical copolymerization of vinyltriethoxysilane with N-vinylpyrrolidone. Its number-average molecular weight evaluated by vapour-phase osmometry was 3500. Porous silica microballs with a mean pore diameter of 225 A, a specific surface area (Ssp) of 130 m2/g and a pore volume of 0.8 cm3/g were modified by the silane dissolved in dry toluene. After washings and drying, 0.55% by weight of nitrogen and 4.65% of carbon remained on the microballs. Chromatographic tests carried out with a series of proteins have proved the size-exclusion mechanism of their separation. [Pg.148]

D. M. Pellet, L. A. Papernik, D. L. Jones, P. R. Darrah, D. L. Grunes, and L. V. Kochian, Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 792 63 (1997). [Pg.39]

Class Co-solvent Mechanism of exclusion Mechanism of binding Expected activity... [Pg.711]

The restricted access principle is based on the concept of diffusion-based exclusion of matrix components and allows peptides, which are able to access the internal surface of the particle, to interact with a functionalized surface (Figure 9.2). The diffusion barrier can be accomplished in two ways (i) the porous adsorbent particles have a topochemically different surface functionalization between the outer particle surface and the internal surface. The diffusion barrier is then determined by an entropy controlled size exclusion mechanism of the particle depending on the pore size of adsorbent (Pinkerton, 1991) and (ii) the diffusion barrier is accomplished by a dense hydrophilic polymer layer with a given network size over the essentially functionalized surface. In other words, the diffusion barrier is moved as a layer to the interfacial... [Pg.211]

The separation is not totally orthogonal, as shown in Fig. 18.1, and is typical of most 2DLC separations (Kilz et al., 1995). Low molecular weight polymers that can diffuse into the packing pores exhibit both hydrophobic and size exclusion mechanisms in RPLC, and this mixed mechanism is shown by the Brij 70 series of peaks, dl through d3. The lower molecular weight material (dl) is more retained on the RPLC column since it can further diffuse into the pores. [Pg.435]

For other plant-derived antibodies, stability was shown to be similar to mammalian counterparts. For instance, a humanized anti-herpes simplex virus monoclonal antibody (IgGl) was expressed in soybean and showed stability in human semen and cervical mucus over 24 h similar to the antibody obtained from mammalian cell culture. In addition, the plant-derived and mammalian antibodies were tested in a standard neutralization assay with no apparent differences in their ability to neutralize HSV-2. As glycans may play a role in immune exclusion mechanisms in mucus, the diffusion of these monoclonal antibodies in human cerival mucus was tested. No differences were found in terms of the prevention of vaginal HSV-2 transmission in a mouse model, i.e. the plant-derived antibody provided efficient protection against a vaginal inoculum of HSV-2 [58]. This shows that glycosylation differences do not necessarily affect efficacy. [Pg.278]

A RAM column functions through a size exclusion mechanism. Large biomolecules such as proteins are restricted from the adsorptive surfaces inside silica particles. Small analyte molecules are able to penetrate into the inner surfaces of the particles. As a result, protein molecules pass through the column rapidly and analytes of interest are retained on the adsorptive sites. Depending on the application, the analyte molecules are directed to MS for detection or transferred onto an analytical column for separation prior to MS detection. Detailed applications are discussed in a recent review.8... [Pg.77]

Replacement of the hydrophilic acrylamide by the more hydrophobic N-iso-propylacrylamide, in combination with the pre-functionalization of the capillary with (3-methacryloyloxypropyl) trimethoxysilane, afforded a monolithic gel covalently attached to the capillary wall. A substantial improvement in the separations of aromatic ketones and steroids was observed using these fritless hydrogel columns, as seen by the column efficiencies of 160,000 found for hydrocortisone and testosterone [92]. The separations exhibited many of the attributes typical of reversed-phase chromatography and led to the conclusion that, in contrast to the original polyacrylamide-based gels, size-exclusion mechanism was no longer the primary mechanism of separation. [Pg.27]

Sander et al. [63] investigated the effect of microparticulate silica pore size on the properties of solution-polymerized Cig stationary phases and observed both an increase in bonding density and shape recognition for wider pore (>120 A) silica. A size-exclusion mechanism was proposed, in which the reaction of the silane polymer on the surface is enhanced for wide pores and reduced for narrow pores. Polymeric Ci8 phases prepared on substrates with narrow pores exhibited monomeric-like chromatographic properties. This effect may be the result of an increase in competitive surface linkage with the less sterically hindered monomers that coexist with the bulkier oligomers that have polymerized in the reaction solution (Figure 5.13). [Pg.258]

FIGURE 5.13 Proposed size exclusion mechanism for the reduced reaction of the silane polymer on narrow pores and an enhanced reaction for wide pores. [Pg.259]

The principle of enthalpy-assisted SEC (ENA SEC) is evident from Figure 16.3c and d (Section 16.3.3). The exclusion mechanism governs the order of elution that is the retention volumes decrease with the rising molar mass of sample. The presence of the controlled enthalpic interactions, however, raises the separation selectivity. [Pg.482]

It is worth noting at this point that Hamielec et al. ( ) have defined a complex polymer as any polymer not having a unique relationship between molecular weight and molecular size. This is a very useful definition although it can sometimes be too restrictive (e.g., in describing a "complex polymer" for detection or for nonsize exclusion mechanisms). [Pg.62]


See other pages where Exclusion mechanism is mentioned: [Pg.2014]    [Pg.131]    [Pg.437]    [Pg.446]    [Pg.145]    [Pg.158]    [Pg.990]    [Pg.27]    [Pg.686]    [Pg.730]    [Pg.738]    [Pg.258]    [Pg.1]    [Pg.12]    [Pg.127]    [Pg.102]    [Pg.190]    [Pg.351]    [Pg.6]    [Pg.422]    [Pg.459]    [Pg.35]    [Pg.40]    [Pg.64]    [Pg.142]    [Pg.145]    [Pg.757]    [Pg.162]    [Pg.207]    [Pg.305]    [Pg.305]    [Pg.1218]   
See also in sourсe #XX -- [ Pg.607 , Pg.608 , Pg.609 ]




SEARCH



© 2024 chempedia.info