Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene oxide salt

The other type is ion-conducting solids [polyethylene oxide) + salt] or gels (polymer + solvent + salt) (p. 314). [Pg.318]

Nonionic, hydrophilic Polyethylene oxide, polyethylene glycol Polyviny alcohol, hydroxyethyl cellulose, polyacrylamide Pure water 0.1-0.2 M salt/buffer, pH 7... [Pg.364]

In 1971, Hiatt et al. found that polyethylene oxide (PEO) of molecular weight about 100000 prevented the adsorption of rabies virus to porous glass with an average pore diameter of 1250 A. The support was modified by passage of one void volume of 0.4% solution of the polymer in water, followed by 5 or more volumes of distilled water or buffered salt solution. The virus was effectively purified from the admixtures of brain tissue fluid by means of size-exclusion chromatography on the modified glass column [28]. [Pg.143]

The same research group proved the applicability of PEO-silicas to the separation of ribonucleic acids and studied how the log k vs m slopes are affected by the molecular weight of polyethylene oxide, the type of salt used in eluent... [Pg.158]

As it was shown in73, 74), methods that can be used to synthesize these copolymers of PAN are those of radical AN block copolymerization in the presence of an oxidation-reduction system in which the hydroxyl end groups of polyethylene oxide) (PEO)73) and polypropylene oxide) (PPO)74- oligomers serve as the reducing agents and tetravalent cerium salts as the oxidizing agents. [Pg.130]

Synthesis of comb (regular graft) copolymers having a PDMS backbone and polyethylene oxide) teeth was reported 344). These copolymers were obtained by the reaction of poly(hydrogen,methyl)siloxane and monohydroxy-terminated polyethylene oxide) in benzene or toluene solution using triethylamine as catalyst. All the polymers obtained were reported to be liquids at room temperature. The copolymers were then thermally crosslinked at 150 °C. Conductivities of the lithium salts of the copolymers and the networks were determined. [Pg.50]

State-of-the-art thin film Li" cells comprise carbon-based anodes (non-graphitic or graphite), solid polymer electrolytes (such as those formed by solvent-free membranes, for example, polyethylene oxide, PEO, and a lithium salt like LiPFe or LiCFsSOs), and metal oxide based cathodes, in particular mixed or doped oxides... [Pg.325]

Steric Stabilization. Steric stabilization was a term first introduced by Heller to explain how adsorbed polyethylene oxide polymers increased the salt concentration required for flocculation of negatively charged aqueous suspensions.(6) Heller s systems were stabilized by both mechanisms, as are most commercial dispersions today, aqueous and non-aqueous. Much of the more recent literature on steric stabilizers has been preoccupied with solubility requirements, for the solubility of polymers is a delicate matter and very sensitive to temperature and solvent... [Pg.332]

Polymer phase-transfer catalysts (also referred to as triphase catalysts) are useful in bringing about reaction between a water-soluble reactant and a water-insoluble reactant [Akelah and Sherrington, 1983 Ford and Tomoi, 1984 Regen, 1979 Tomoi and Ford, 1988], Polymer phase transfer catalysts (usually insoluble) act as the meeting place for two immiscible reactants. For example, the reaction between sodium cyanide (aqueous phase) and 1-bromooctane (organic phase) proceeds at an accelerated rate in the presence of polymeric quaternary ammonium salts such as XXXIX [Regen, 1975, 1976]. Besides the ammonium salts, polymeric phosphonium salts, crown ethers and cryptates, polyethylene oxide), and quaternized polyethylenimine have been studied as phase-transfer catalysts [Hirao et al., 1978 Ishiwatari et al., 1980 Molinari et al., 1977 Tundo, 1978]. [Pg.770]

For using lithium batteries (which generally have high energy densities) under extreme conditions, more durable and better conducting electrolytes are necessary. Salt-in-polymer electrolytes discovered by Angell et al. (1993) seem to provide the answer. Polypropylene oxide or polyethylene oxide is dissolved in low melting point mixtures of lithium salts to obtain rubbery materials which are excellent lithium-ion conductors at ambient temperatures. [Pg.436]

In our attempts to synthesize nano structured or even nanoporous chromium (III) oxide we used a great variety of surfactants (amines, polyethylen oxides, carboxylates, sulfates, phosphates and quartemary alkylammonium salts) and Cr3+ precursors (nitrate, acetate, acetylacetonate and iso-propyl ate) to obtain the desired materials [19]. Different kinds of interaction are established throughout the structure-directing process such as electrostatic (S+... [Pg.363]

Although the motion of protons does not lead to electrical conduction in the case of benzoic acid, electronic and even ionic conductivity can be found in other molecular crystals. A well-studied example of ionic conduction is a film of polyethylene oxide (PEO) which forms complex structures if one adds alkaline halides (AX). Its ionic conductivity compares with that of normal inorganic ionic conductors (log [cr (Q cm)] -2.5). Other polymers with EO-units show a similar behavior when they are doped with salts. Lithium batteries have been built with this type of... [Pg.389]

Fig. 7. Effects of salts on the intrinsic viscosity of polyethylene oxide) at 30°C. Molecular weight is 5.5 x 106 (3). Fig. 7. Effects of salts on the intrinsic viscosity of polyethylene oxide) at 30°C. Molecular weight is 5.5 x 106 (3).
Polyethylene oxide) associates in solution with certain electrolytes (48—52). For example, high molecular weight species of poly(ethylene oxide) readily dissolve in methanol that contains 0.5 wt % KI, although the resin does not remain in methanol solution at room temperature. This salting-in effect has been attributed to ion binding, which prevents coagulation in the nonsolvent. Complexes with electrolytes, in particular lithium salts, have received widespread attention on account of the potential for using these materials in a polymeric battery. The performance of solid electrolytes based on poly(ethylene oxide) in terms of ion transport and conductivity has been discussed (53—58). The use of complexes of poly(ethylene oxide) in analytical chemistry has also been reviewed (59). [Pg.342]

It is well known that addition of neutral salts to polymer solutions reduces the overall dimensions of polymer chains (the salting-out effect) [43, 44]. In general, the reduction in chain dimensions is reflected in the polymer viscosity. An example of salt effects on water soluble polymer with non-ionic characters has been reported in the literature where the precipitation temperature and the viscosity of polyethylene oxide (PEO) were measured to interpret the unusual... [Pg.229]

Fig. 24. Parallel effects of salts on the molar reduction in the precipitation temperature of polyethylene oxide in the salt concentration of I mol-1-1, ATm and the transition molality of AMsopropylacrylamide gel, CT. In the case of continuous phase change, Cr was defined as the point of inflexion in the volume-molality curve... Fig. 24. Parallel effects of salts on the molar reduction in the precipitation temperature of polyethylene oxide in the salt concentration of I mol-1-1, ATm and the transition molality of AMsopropylacrylamide gel, CT. In the case of continuous phase change, Cr was defined as the point of inflexion in the volume-molality curve...
A second type of solid ionic conductors based around polyether compounds such as polyethylene oxide) (PEO) has been discovered and characterized. The polyethers can complex and stabilize lithium ions in organic media. They also dissolve salts such as L1CIO4 to produce conducting solid solutions. The use of these materials in rechargeable lithium-batteries has been proposed. [Pg.178]

Superabsorbent polymers are now commonly made from the polymerization of acrylic acid blended with sodium hydroxide in the presence of an initiator to form a polyacrylic acid, sodium salt (sometimes referred to as cross-linked sodium polyacrylate). Some of the polymers include polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxy-methyl-cellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile to name a few. The latter is one of the oldest SAP forms created. [Pg.32]

Lead and mercury are deposited as micron-sized clusters, predominantly at intercrystallite boundaries [105] so does lithium from the polyethylene oxide solid electrolyte. What is more, Li intercalates into the sp2-carbon [22, 138], Thus, observations on the Li intercalation and deintercalation enable one to detect non-diamond carbon on the diamond film surface. Copper is difficult to plate on diamond [139], There is indirect evidence that Cu electrodeposition, whose early stages proceed as underpotential deposition, also involves the intercrystallite boundaries [140], We note that diamond electrodes seem to be an appropriate tool for use in the well-known electroanalytical method of detection of traces of metal ions in solutions by their cathodic accumulation followed by anodic stripping. The same holds for anodic deposition, e.g. of, Pb as PbCh with subsequent cathodic reduction [141, 142], Figure 30 shows the voltammograms of anodic dissolution of Cd and Pb cathodically predeposited from their salt mixtures on diamond and glassy carbon electrodes. We see that the dissolution peaks are clearly resolved. The detection limit for Zn, Cd, and Pb is as low as a few ppb [143]. [Pg.251]

Typical examples of the first group are polyethylene oxide [140-144] and polypropylene oxide [145-146] mixed with lithium salts. The oxygen atoms of these polymers interact with the Li ions and solvate them, and thus the Li salt may be uniformly dissolved in these polymers. [Pg.50]

Ionically conducting polymers and their relevance to lithium batteries were mentioned in a previous section. However, there are several developments which contain both ionically conducting materials and other supporting agents which improve both the bulk conductivity of these materials and the properties of the anode (Li)/electrolyte interface in terms of resistivity, passivity, reversibility, and corrosion protection. A typical example is a composite electrolyte system comprised of polyethylene oxide, lithium salt, and A1203 particles dispersed in the polymeric matrices, as demonstrated by Peled et al. [182], By adding alumina particles, a new conduction mechanism is available, which involved surface conductivity of ions on and among the particles. This enhances considerably the overall conductivity of the composite electrolyte system. There are also a number of other reports that demonstrate the potential of these solid electrolyte systems [183],... [Pg.54]

There have been only a few reports of mesostructured metal sulfides. Mesoporous cadmium sulfide was prepared from polyethylene oxide surfactants and cadmium salts exposed to hydrogen sulfide [35], A study of the effects of the counter-anion on the formation of CdS mesostructures led to the conclusion that the use of cadmium nitrate and perchlorate salts improved the degree of order of the mesostructure over the chloride, sulfate and acetate salts. This effect was attributed to the stronger acidity of conjugate acid by-products of the reaction in the case of nitrates that leads to the dissolution of high-energy defects and enhances structural order. [Pg.43]

Polymeric electrolytes, polymer-salt complexes, and gelled electrolytes, e.g., benzyl sulfonic acid siloxane, polyethylene oxide (imine, succinate)-LiC104, and PVDF gel in THF containing a mixture of Bu2Mg and AlEtCl2, respectively. [Pg.453]

Surfactants. Ethylene oxide-containing surfactants are generally of nonionic or anionic classes. The nonionic materials are made by base-catalyzed addition of ethylene oxide to either fatty alcohols or alkylphenols. Sulfation can be used to convert these compounds to the sulfated anionic surfactants. The products contain from a few to many ethylene oxide molecules per alcohol. The chain of polyethylene oxide) in a nonionic product acts as the hydrophile, and the alkyl or alkaryl residue is the hydrophobe. A sulfate salt group adds to the hydrophilicity of an anionic surfactant. [Pg.358]


See other pages where Polyethylene oxide salt is mentioned: [Pg.614]    [Pg.614]    [Pg.71]    [Pg.426]    [Pg.451]    [Pg.595]    [Pg.606]    [Pg.640]    [Pg.26]    [Pg.273]    [Pg.46]    [Pg.333]    [Pg.569]    [Pg.121]    [Pg.24]    [Pg.219]    [Pg.338]    [Pg.340]    [Pg.264]    [Pg.148]    [Pg.451]    [Pg.95]    [Pg.482]    [Pg.419]    [Pg.522]    [Pg.468]    [Pg.206]    [Pg.57]   
See also in sourсe #XX -- [ Pg.501 ]




SEARCH



Oxidizing salts

Polyethylene oxide

© 2024 chempedia.info