Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anions Class

Aeruginosine A (254) (69JCS(C)2514) and B (255) (61MI2), shown in Scheme 83, are metabolites of the pyocyanine producing Pseudomonas aeruginosa. They are isoconjugate with the odd alternant 1-isopropenyl-anthracene anion (class 13). [Pg.138]

Cosio C. Vuillemin L. De Meyer M. Kevers C. Penel C. Dunand C. (2009) An anionic class III peroxidases from zuccini may regulate hypocotyl elongation through its auxin oxidase activity / / Planta. V. 229. P. 823-836. [Pg.217]

In the anionic class, the most used compounds are linear alkylbenzene sulfonates from petroleum and alkyl sulfates from animal and vegetable fats. The straight-chain paraffins or olefins needed are produced from petroleum. [Pg.503]

Surfactants. Ethylene oxide-containing surfactants are generally of nonionic or anionic classes. The nonionic materials are made by base-catalyzed addition of ethylene oxide to either fatty alcohols or alkylphenols. Sulfation can be used to convert these compounds to the sulfated anionic surfactants. The products contain from a few to many ethylene oxide molecules per alcohol. The chain of polyethylene oxide) in a nonionic product acts as the hydrophile, and the alkyl or alkaryl residue is the hydrophobe. A sulfate salt group adds to the hydrophilicity of an anionic surfactant. [Pg.358]

Class according to prevailing anion Class according to predominating cation... [Pg.180]

A change in the cation class to ammonium [RRRN] or pyrrolidinium [RRPyr] based ILs does not lead to a decline of the prediction quality. A change of the anion class results in a slight shift of the prediction. While the values for triflate [OTf and tetrafluoroborate [BF4] still fit the trend of [NTf2]-IL, the absolute deviation is increasing for the sulfate anion [RS04] . However, the trend can be predicted for sulfate ILs as well. [Pg.201]

J.D. Dana classified the minerals into following anionic classes ... [Pg.7]

Figures 4 and 5 also appear to give the same overall picture insofar as they both show the nonionic and nonionic-anionic classes to be less efficient at lowering DST than the anionic class, though differentials appear to be greater in Fig. 5. However, the two definitions of efficiency are measuring slightly different things. (yi 5) demonstrates that the most efficient compounds from the anionic series are 0.27-0.31 of log unit in concentration more efficient than the corresponding compounds from either the nonionic or nonionic-anionic series. This effectively says that twice as much nonionic or nonionic-anionic is required relative to the anionic to reach the... Figures 4 and 5 also appear to give the same overall picture insofar as they both show the nonionic and nonionic-anionic classes to be less efficient at lowering DST than the anionic class, though differentials appear to be greater in Fig. 5. However, the two definitions of efficiency are measuring slightly different things. (yi 5) demonstrates that the most efficient compounds from the anionic series are 0.27-0.31 of log unit in concentration more efficient than the corresponding compounds from either the nonionic or nonionic-anionic series. This effectively says that twice as much nonionic or nonionic-anionic is required relative to the anionic to reach the...
Several other anionic surfactants are commercially available such as sulpho-succinates, isethionates and taurates and these are sometimes used for special applications. These anionic classes and some of their applications are briefly described below. [Pg.5]

Surfactants. Ethylene oxide-containing surfactants are generally of nonionic or anionic classes. The nonionic materials are made by base-catalyzed addition of ethylene oxide to either fatty alcohols or alkylphenols. Sulfation... [Pg.814]

M.p. 296 C. Accepts an electron from suitable donors forming a radical anion. Used for colorimetric determination of free radical precursors, replacement of Mn02 in aluminium solid electrolytic capacitors, construction of heat-sensitive resistors and ion-specific electrodes and for inducing radical polymerizations. The charge transfer complexes it forms with certain donors behave electrically like metals with anisotropic conductivity. Like tetracyanoethylene it belongs to a class of compounds called rr-acids. tetracyclines An important group of antibiotics isolated from Streptomyces spp., having structures based on a naphthacene skeleton. Tetracycline, the parent compound, has the structure ... [Pg.389]

At potentials positive to the bulk metal deposition, a metal monolayer-or in some cases a bilayer-of one metal can be electrodeposited on another metal surface this phenomenon is referred to as underiDotential deposition (upd) in the literature. Many investigations of several different metal adsorbate/substrate systems have been published to date. In general, two different classes of surface stmetures can be classified (a) simple superstmetures with small packing densities and (b) close-packed (bulklike) or even compressed stmetures, which are observed for deposition of the heavy metal ions Tl, Hg and Pb on Ag, Au, Cu or Pt (see, e.g., [63, 64, 65, 66, 62, 68, 69 and 70]). In case (a), the metal adsorbate is very often stabilized by coadsorbed anions typical representatives of this type are Cu/Au (111) (e.g. [44, 45, 21, 22 and 25]) or Cu/Pt(l 11) (e.g. [46, 74, 75, and 26 ]) It has to be mentioned that the two dimensional ordering of the Cu adatoms is significantly affected by the presence of coadsorbed anions, for example, for the upd of Cu on Au(l 11), the onset of underiDotential deposition shifts to more positive potentials from 80"to Br and CE [72]. [Pg.2753]

A fuzzier atom type participating in these descriptors has been defined that is pharmacologically relevant - the physicochemical type at near-neutral pH [24], which is one of the following seven binding property classes 1 = cation 2 = anion 3 = neutral hydrogen-bond donor 4 = neutral H-bond acceptor ... [Pg.311]

Despite numerous efforts, there is no generally accepted theory explaining the causes of stereoregulation in acryflc and methacryflc anionic polymerizations. Complex formation with the cation of the initiator (146) and enoflzation of the active chain end are among the more popular hypotheses (147). Unlike free-radical polymerizations, copolymerizations between acrylates and methacrylates are not observed in anionic polymerizations however, good copolymerizations within each class are reported (148). [Pg.170]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Many perfluoroaUphatic ethers and tertiary amines have been prepared by electrochemical fluorination (1 6), direct fluorination using elemental fluorine (7—9), or, in a few cases, by fluorination using cobalt trifluoride (10). Examples of lower molecular weight materials are shown in Table 1. In addition to these, there are three commercial classes of perfluoropolyethers prepared by anionic polymerization of hexafluoropropene oxide [428-59-1] (11,12), photooxidation of hexafluoropropene [116-15-4] or tetrafluoroethene [116-14-3] (13,14), or by anionic ring-opening polymeriza tion of tetrafluorooxetane [765-63-9] followed by direct fluorination (15). [Pg.296]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Unlike ftee-tadical polymerizations, copolymerizations between acrylates and methacrylates ate not observed in anionic polymerizations however, good copolymerizations within each class ate reported (99). [Pg.269]

Protonic initiation is also the end result of a large number of other initiating systems. Strong acids are generated in situ by a variety of different chemistries (6). These include initiation by carbenium ions, eg, trityl or diazonium salts (151) by an electric current in the presence of a quartenary ammonium salt (152) by halonium, triaryl sulfonium, and triaryl selenonium salts with uv irradiation (153—155) by mercuric perchlorate, nitrosyl hexafluorophosphate, or nitryl hexafluorophosphate (156) and by interaction of free radicals with certain metal salts (157). Reports of "new" initiating systems are often the result of such secondary reactions. Other reports suggest standard polymerization processes with perhaps novel anions. These latter include (Tf)4Al (158) heteropoly acids, eg, tungstophosphate anion (159,160) transition-metal-based systems, eg, Pt (161) or rare earths (162) and numerous systems based on tri flic acid (158,163—166). Coordination polymerization of THF may be in a different class (167). [Pg.362]

Higher order aUphatic quaternary compounds, where one of the alkyl groups contains - 10 carbon atoms, exhibit surface-active properties (167). These compounds compose a subclass of a more general class of compounds known as cationic surfactants (qv). These have physical properties such as substantivity and aggregation ia polar media (168) that give rise to many practical appHcations. In some cases the ammonium compounds are referred to as iaverse soaps because the charge on the organic portion of the molecule is cationic rather than anionic. [Pg.377]

The most commonly used emulsifiers are sodium, potassium, or ammonium salts of oleic acid, stearic acid, or rosin acids, or disproportionate rosin acids, either singly or in mixture. An aLkylsulfate or aLkylarenesulfonate can also be used or be present as a stabilizer. A useful stabilizer of this class is the condensation product of formaldehyde with the sodium salt of P-naphthalenesulfonic acid. AH these primary emulsifiers and stabilizers are anionic and on adsorption they confer a negative charge to the polymer particles. Latices stabilized with cationic or nonionic surfactants have been developed for special apphcations. Despite the high concentration of emulsifiers in most synthetic latices, only a small proportion is present in the aqueous phase nearly all of it is adsorbed on the polymer particles. [Pg.254]


See other pages where Anions Class is mentioned: [Pg.115]    [Pg.115]    [Pg.13]    [Pg.168]    [Pg.171]    [Pg.94]    [Pg.94]    [Pg.224]    [Pg.49]    [Pg.115]    [Pg.115]    [Pg.13]    [Pg.168]    [Pg.171]    [Pg.94]    [Pg.94]    [Pg.224]    [Pg.49]    [Pg.106]    [Pg.488]    [Pg.2398]    [Pg.2575]    [Pg.2576]    [Pg.2577]    [Pg.2578]    [Pg.56]    [Pg.121]    [Pg.597]    [Pg.188]    [Pg.455]    [Pg.547]    [Pg.429]    [Pg.470]    [Pg.12]    [Pg.462]   
See also in sourсe #XX -- [ Pg.163 , Pg.164 ]




SEARCH



© 2024 chempedia.info