Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene nomenclature

Mention should be made of the nomenclature for the polymer. Industrially the materially is invariably known in the English-speaking world as polypropylene. However, the lUPAC name for the monomer is propene and until 1975 the recommended lUPAC name was polypropene, a term very rarely used. The latest lUPAC rules base the name of a polymer on the constitutional repeating unit, which in this case is a propylene unit (c.f. a methylene unit for polyethylene) and this leads to the name poly(propylene) (i.e. with brackets). In this volume the more common, unbracketed but still unambiguous name will be used. [Pg.248]

Plastomer, a nomenclature constructed from the synthesis of the words plastic and elastomer, illustrates a family of polymers, which are softer (lower hexural modulus) than the common engineering thermoplastics such as polyamides (PA), polypropylenes (PP), or polystyrenes (PS). The common, current usage of this term is reshicted by two limitahons. First, plastomers are polyolehns where the inherent crystallinity of a homopolymer of the predominant incorporated monomer (polyethylene or isotactic polypropylene [iPP]) is reduced by the incorporahon of a minority of another monomer (e.g., octene in the case of polyethylene, ethylene for iPP), which leads to amorphous segments along the polymer chain. The minor commoner is selected to distort... [Pg.165]

As can be seen from Table 5.2, nonylphenol ethoxylates have a steeply increasing cloud point for very little addition of ethylene oxide. Most industrial products have a rounded up/down value of ethylene oxide in their nomenclature. Thus, NP9 from one company could be actually NP9.25 and from another could be NP8.75. The cloud point for these two products could be 15° C different and in some applications, such as in solubilisation of a fragrance or flavouring, this could be crucial. This is almost certainly due to the sharp (compared to alcohol-based products) Poisson isomer distribution and also variable polyethylene glycol levels in different manufacturers products. Therefore, it is suggested that product should always be purchased on a cloud point specification and not to an EO number. [Pg.136]

This chapter introduces basic features of polyethylene, a product that touches everyday life in countless ways. However, polyethylene is not monolithic. The various types, their nomenclatures, and how they differ will be discussed. Key characteristics and classification methods will be briefly surveyed. An overview of transition metal catalysts has been included in this introductory chapter (see section 1.5) because these are the most important types of catalysts currently used in the manufacture of polyethylene. Additional details on transition metal catalysts will be addressed in subsequent chapters. [Pg.2]

This chapter may be skipped by readers having an understanding of fundamental properties and nomenclatures of industrial polyethylene and a basic understanding of catalysts. [Pg.2]

The polymer produced in eq 1.1 is known as polyethylene and, less commonly, as polymethylene, polyethene or polythene. (In the late 1960s, "polythene" became part of popular culture when the Beatles released "Polythene Pam.") Polyethylene is the lUPAC recommended name for homopolymer. As we shall see, however, many important ethylene-containing polymers are copolymers. Nomenclatures for various types of polyethylene are addressed in section 1.3. Though some have suggested that its name implies the presence of unsaturated carbon atoms, there are in fact few C=C bonds in polyethylene, usually less than 2 per thousand carbon atoms and these occur primarily as vinyl or vinylidene end groups. [Pg.4]

Industrial polyethylenes are commonly classified and named using acronyms that incorporate resin density or molecular weight. lUPAC names are not typically used. In a few cases, copolymers are named using abbreviations for the comonomer employed. Nomenclature typically used for industrial polyethylenes will be discussed in this section. (Molecular weight will be discussed in section 1.4.)... [Pg.7]

While useful as starting points, SPI and ASTM classifications are not sufficient to describe the wide range of polyethylenes available in the industry. Classifications have been further subdivided to convey additional information, such as molecular weight or comonomer employed. Eurther, manufacturers use their own nomenclature and trade names. Clearly, the names used for various polyethylenes are somewhat arbitrary and subjective. The reader should not rigidly construe classifications and may encounter other nomenclatures. An overview of various classifications of polyethylene in common use in industry is provided below ... [Pg.8]

Table 1.2 provides a summary of commonly used classifications in the polyethylene industry. A brief note is warranted here to conclude the survey of polyethylene classifications and nomenclature. In the early 1990s, several types of polyethylene manufactured with metallcxiene catalysts (a type of single site catalyst, see Chapter 6) were introduced to the market. To differentiate polyethylene produced with metallocenes from polyethylene manufactured using older conventional catalysts, metallocene grades are sometimes abbreviated mVLDPE, mLLDPE, etc. [Pg.13]

Chapter 1 is used to review the history of polyethylene, to survey quintessential features and nomenclatures for this versatile polymer and to introduce transition metal catalysts (the most important catalysts for industrial polyethylene). Free radical polymerization of ethylene and organic peroxide initiators are discussed in Chapter 2. Also in Chapter 2, hazards of organic peroxides and high pressure processes are briefly addressed. Transition metal catalysts are essential to production of nearly three quarters of all polyethylene manufactured and are described in Chapters 3, 5 and 6. Metal alkyl cocatalysts used with transition metal catalysts and their potentially hazardous reactivity with air and water are reviewed in Chapter 4. Chapter 7 gives an overview of processes used in manufacture of polyethylene and contrasts the wide range of operating conditions characteristic of each process. Chapter 8 surveys downstream aspects of polyethylene (additives, rheology, environmental issues, etc.). However, topics in Chapter 8 are complex and extensive subjects unto themselves and detailed discussions are beyond the scope of an introductory text. [Pg.148]

Graft copolymers of A and B monomers are named poly(A-g-B) or poly -graft-po y B with the backbone polymer -(-A-) - mentioned before the branch polymer. Some examples are poly(ethylene-g-styrene) or polyethylene-gra/it-polystyrene and starch-gra/ir-polystyrene. In the nomenclature of block copolymers, b or block is used in place of g or graft, e.g. poly(A-b-B) or poly A-block-poly B, poly(A-6-B-6-A) or poly A-6/ocik-poly B-blocic-po y A, poly(A-b-B-6-C) or poly A-6/ock-poly B-block-po y C), and so on. Thus the triblock polymer (XXIV) is called poly(styrene-6-butadiene-b-styrene) or polystyrene-6/ocA -polybutadiene-6/ock -polystyrene. When such polymers are articles of commerce they are usually designated by the monomer initials thus, structure (XXIV) would be named SBS block copolymer. [Pg.39]

Figure 1. Carbon-13 NMR Chemical Shifts and Nomenclature of Structural Entities Found in Polyethylene. Figure 1. Carbon-13 NMR Chemical Shifts and Nomenclature of Structural Entities Found in Polyethylene.
For the common nomenclature the usual practice is to name a polymer according to its source, i.e., the monomer(s) used in its synthesis, and the generic term used is poly monomer , whether or not the monomer is real. The prefix poly is added on to the name of the monomer to form a single word, e.g., polyethylene, polystyrene, and polyacrylonitrile (see Table 1.1). However, when the monomer has a multiworded name, the name of the monomer after the prefix poly is enclosed in parentheses, e.g., poly(vinyl chloride), poly(vinyl alcohol) and poly (methyl methacrylate) (Table 1.1). [Pg.31]

The 80%/20% binary blends PE/PS and PP/PS were subjected to F-C reaction for compatibilization performed under nitrogen atmosphere in a Banbury mixer. Different concentrations of catalyst (AICI3) and 0.3% of cocatalyst (styrene) were added to the completely melted and mixed physical blends. The blends and catalyst concentrations are weight based. High MW commercial grades of linear low density polyethylene (LLDPE), and injection-grade polypropylene and polystyrene were used as homopolymers. The compatibilization conditions and MW of the homopolymers are given in Table 20.1. Blend names are listed in nomenclature. [Pg.603]

The nomenclature used by polymer scientists is based on the common name of the reactant monomer preceded by the prefix poly . For example, polystyrene is the most frequently used name for the polymer derived from the monomer commonly known as styrene, and polyethylene is derived from the monomer... [Pg.39]

The prefix g describes graft copolymers and the prefix b describes block copolymers. In this system of nomenclature, the first polymer segment corresponds to the homopolymer or copolymer that was formed during the first stage of the synthesis. Should this be a graft copolymer then this will represent the backbone polymer. For instance, if polystyrene is graft copolymerized with polyethylene, the product is called poly(ethylene-g-styrene). A more complex example can be poly (butadiene-co-styrene-g-acrylonitrile-co-vinylidine chloride). Similarly, examples of block copolymers would be poly(acrylonitrile- -methyl methacrylate) or poly(methyl methacry late- -acry lonitrile). [Pg.5]


See other pages where Polyethylene nomenclature is mentioned: [Pg.205]    [Pg.10]    [Pg.12]    [Pg.219]    [Pg.268]    [Pg.110]    [Pg.19]    [Pg.30]    [Pg.1]    [Pg.7]    [Pg.36]    [Pg.9]    [Pg.47]    [Pg.437]    [Pg.205]    [Pg.103]    [Pg.38]    [Pg.99]    [Pg.133]    [Pg.253]    [Pg.221]    [Pg.1071]    [Pg.100]    [Pg.76]    [Pg.107]    [Pg.10]    [Pg.143]    [Pg.7]    [Pg.292]   
See also in sourсe #XX -- [ Pg.15 , Pg.16 , Pg.17 , Pg.18 ]




SEARCH



Types and Nomenclature of Polyethylenes

© 2024 chempedia.info