Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester temperatures

We have not attempted to indicate the conditions of temperature, catalyst, solvent, and so on, for these various reactions. For this type of information, references that deal specifically with synthetic polymer chemistry should be consulted. In the next few paragraphs we shall comment on the various routes to polyester formation in the order summarized above and followed in Table 5.3. [Pg.299]

Acid chlorides are generally more reactive than the parent acids, so polyester formation via reaction 5 in Table 5.3 can be carried out in solution and at lower temperatures, in contrast with the bulk reactions of the melt as described above. Again, the by-product molecules must be eliminated either by distillation or precipitation. The method of interfacial condensation, described in the next section, can be applied to this type of reaction. [Pg.304]

This compound is sometimes called a nylon salt. The salt polymer equilibrium is more favorable to the production of polymer than in the case of polyesters, so this reaction is often carried out in a sealed tube or autoclave at about 200°C until a fairly high extent of reaction is reached then the temperature is raised and the water driven off to attain the high molecular weight polymer. [Pg.306]

Other examples of materials that respond smartly to changes in temperature are the poly(ethylene glycol)s-modifted cottons, polyesters, and... [Pg.250]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Dry chlorine has a great affinity for absorbing moisture, and wet chlorine is extremely corrosive, attacking most common materials except HasteUoy C, titanium, and tantalum. These metals are protected from attack by the acids formed by chlorine hydrolysis because of surface oxide films on the metal. Tantalum is the preferred constmction material for service with wet and dry chlorine. Wet chlorine gas is handled under pressure using fiberglass-reinforced plastics. Rubber-lined steel is suitable for wet chlorine gas handling up to 100°C. At low pressures and low temperatures PVC, chlorinated PVC, and reinforced polyester resins are also used. Polytetrafluoroethylene (PTFE), poly(vinyhdene fluoride) (PVDE), and... [Pg.510]

In the late 1980s, new fully aromatic polyester fibers were iatroduced for use ia composites and stmctural materials (18,19). In general, these materials are thermotropic Hquid crystal polymers that are melt-processible to give fibers with tensile properties and temperature resistance considerably higher than conventional polyester textile fibers. Vectran (Hoechst-Celanese and Kuraray) is a thermotropic Hquid crystal aromatic copolyester fiber composed of -hydroxyben2oic acid [99-96-7] and 6-hydroxy-2-naphthoic acid. Other fully aromatic polyester fiber composites have been iatroduced under various tradenames (19). [Pg.325]

The glass-transition temperature, T, of dry polyester is approximately 70°C and is slightly reduced ia water. The glass-transitioa temperatures of copolyesters are affected by both the amouat and chemical nature of the comonomer (32,47). Other thermal properties, including heat capacity and thermal conductivity, depend on the state of the polymer and are summarized ia Table 2. [Pg.327]

When PET is extracted with water no detectable quantities of ethylene glycol or terephthaUc acid can be found, even at elevated extraction temperatures (110). Extractable materials are generally short-chained polyesters and aldehydes (110). Aldehydes occur naturally iu foods such as fmits and are produced metabohcaHy iu the body. Animal feeding studies with extractable materials show no adverse health effects. [Pg.333]

Polyester sheet products may be produced from amorphous poly(ethylene terephalate) (PET) or partiaHy crystallized PET. Acid-modified (PETA) and glycol modified (PETG) resins are used to make ultraclear sheet for packaging. Poly(butylene terephthalate) (PBT) has also been used in sheet form. Liquid-crystal polyester resins are recent entries into the market for specialty sheet. They exhibit great strength, dimensional stabHity, and inertness at temperatures above 250°C (see Polyesters,thermoplastic). [Pg.377]

Polyester. Poly(ethylene terephthalate) [25038-59-9] (PET) polyester film has intermediate gas- and water- vapor barrier properties, very high tensile and impact strengths, and high temperature resistance (see Polyesters, thermoplastic). AppHcations include use as an outer web in laminations to protect aluminum foil. It is coated with PVDC to function as the flat or sealing web for vacuum/gas flush packaged processed meat, cheese, or fresh pasta. [Pg.452]

Extmsion of polyethylene and some polypropylenes is usually through a circular die into a tubular form, which is cut and collapsed into flat film. Extmsion through a linear slot onto chilled rollers is called casting and is often used for polypropylene, polyester, and other resins. Cast, as well as some blown, films may be further heated and stretched in the machine or in transverse directions to orient the polymer within the film and improve physical properties such as tensile strength, stiffness, and low temperature resistance. [Pg.453]

Esters. Neopentyl glycol diesters are usually Hquids or low melting soflds. Polyesters of neopentyl glycol, and in particular unsaturated polyesters, are prepared by reaction with polybasic acids at atmospheric pressure. High molecular weight linear polyesters (qv) are prepared by the reaction of neopentyl glycol and the ester (usually the methyl ester) of a dibasic acid through transesterification (37—38). The reaction is usually performed at elevated temperatures, in vacuo, in the presence of a metallic catalyst. [Pg.373]

Hydroxypivalyl hydroxypivalate or 3-hydroxy-2,2-dimethylpropyl 3-hydroxy-2,2-dimethylpropionate (9) is a white crystalline solid at room temperature. It is used to manufacture polyester resias for use ia surface coatiags where good resistance to weatheting and acid rain are of particular importance (6). [Pg.374]

Properties. As prepared, the polymer is not soluble in any known solvents below 200°C and has limited solubiUty in selected aromatics, halogenated aromatics, and heterocycHc Hquids above this temperature. The properties of Ryton staple fibers are in the range of most textile fibers and not in the range of the high tenacity or high modulus fibers such as the aramids. The density of the fiber is 1.37 g/cm which is about the same as polyester. However, its melting temperature of 285°C is intermediate between most common melt spun fibers (230—260°C) and Vectran thermotropic fiber (330°C). PPS fibers have a 7 of 83°C and a crystallinity of about 60%. [Pg.70]

A Methylolhydantoins. l,3-Bis(hydroxymethyl)-5,5-dimethyIhydantoia [6440-58-0] is used extensively as a preservative in cosmetic and industrial appHcations, and carries EPA registration for the industrial segment. It is available in soHd and in aqueous solution forms, including low free formaldehyde versions of the latter. A related derivative, l,3-bis(hydroxyethyl)-5,5-dimethyIhydantoia [26850-24-8] is used in the manufacture of high temperature polyesters, polyurethanes, and coatings, offering improved heat resistance, uv stabiUty, flexibiUty, and adhesion. [Pg.255]

Carboxylic acid hydiazides are prepared from aqueous hydrazine and tfie carboxylic acid, ester, amide, anhydride, or halide. The reaction usually goes poody with the free acid. Esters are generally satisfactory. Acyl halides are particularly reactive, even at room temperature, and form the diacyl derivatives (22), which easily undergo thermal dehydration to 1,3,4-oxadiazoles (23). Diesters give dihydtazides (24) and polyesters such as polyacrylates yield a polyhydrazide (25). The chemistry of carboxyhc hydrazides has been reviewed (83,84). [Pg.280]


See other pages where Polyester temperatures is mentioned: [Pg.352]    [Pg.257]    [Pg.8538]    [Pg.352]    [Pg.257]    [Pg.8538]    [Pg.151]    [Pg.169]    [Pg.233]    [Pg.450]    [Pg.41]    [Pg.283]    [Pg.309]    [Pg.314]    [Pg.326]    [Pg.332]    [Pg.377]    [Pg.378]    [Pg.412]    [Pg.468]    [Pg.124]    [Pg.167]    [Pg.388]    [Pg.449]    [Pg.454]    [Pg.455]    [Pg.361]    [Pg.368]    [Pg.375]    [Pg.539]    [Pg.64]    [Pg.73]    [Pg.311]    [Pg.508]    [Pg.151]    [Pg.222]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Glass transition temperature aliphatic polyesters

Glass transition temperature polyester resin

Glass transition temperature polyesters

Heat distortion temperature polyesters

Melting temperature polyesters

Polycarbonate polyester temperature

Polyester examples of chemical behaviour at room temperature

Polyester resin temperature

Polyesters high temperature dyeing

Temperature aliphatic polyester degradation

© 2024 chempedia.info