Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters diacids

Organic polyesters, obtained either from a diacid and a mono-alcohoi, or from poly-alcohols and a monoacid, or from di-alcohols and a diacid. This class represented 29% of the synthetic base market in France in 1992. [Pg.279]

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

Standard polyester fibers contain no reactive dye sites. PET fibers are typically dyed by diffusiag dispersed dyestuffs iato the amorphous regions ia the fibers. Copolyesters from a variety of copolymeri2able glycol or diacid comonomers open the fiber stmcture to achieve deep dyeabiHty (7,28—30). This approach is useful when the attendant effects on the copolyester thermal or physical properties are not of concern (31,32). The addition of anionic sites to polyester usiag sodium dimethyl 5-sulfoisophthalate [3965-55-7] has been practiced to make fibers receptive to cationic dyes (33). Yams and fabrics made from mixtures of disperse and cationicaHy dyeable PET show a visual range from subde heather tones to striking contrasts (see Dyes, application and evaluation). [Pg.325]

Chemical Properties. Trimethylpentanediol, with a primary and a secondary hydroxyl group, enters into reactions characteristic of other glycols. It reacts readily with various carboxyUc acids and diacids to form esters, diesters, and polyesters (40). Some organometaUic catalysts have proven satisfactory for these reactions, the most versatile being dibutyltin oxide. Several weak bases such as triethanolamine, potassium acetate, lithium acetate, and borax are effective as stabilizers for the glycol during synthesis (41). [Pg.373]

A polyester backbone with two HFIP groups (12F aromatic polyester of 12F-APE) was derived by the polycondensation of the diacid chloride of 6FDCA with bisphenol AF or bisphenol A under phase-transfer conditions (120). These polymers show complete solubkity in THF, chloroform, ben2ene, DMAC, DMF, and NMP, and form clear, colorless, tough films the inherent viscosity in chloroform at 25°C is 0.8 dL/g. A thermal stabkity of 501°C (10% weight loss in N2) was observed. [Pg.539]

The next approach to incorporate the 12F-diol into a polyurethane matrix was reaction of the y -12F-diol with aUphatic diacid chlorides (where a = 3 or 4) to give low molar mass polyesters (141) ... [Pg.540]

The second largest use at 21% is for unsaturated polyester resins, which are the products of polycondensation reactions between molar equivalents of certain dicarboxyhc acids or thek anhydrides and glycols. One component, usually the diacid or anhydride, must be unsaturated. A vinyl monomer, usually styrene, is a diluent which later serves to fully cross-link the unsaturated portion of the polycondensate when a catalyst, usually a peroxide, is added. The diacids or anhydrides are usually phthahc anhydride, isophthahc acid, and maleic anhydride. Maleic anhydride provides the unsaturated bonds. The exact composition is adjusted to obtain the requked performance. Resins based on phthahc anhydride are used in boat hulls, tubs and spas, constmction, and synthetic marble surfaces. In most cases, the resins contain mineral or glass fibers that provide the requked stmctural strength. The market for the resins tends to be cychcal because products made from them sell far better in good economic times (see Polyesters,unsaturated). [Pg.485]

Like terephthalic acid, isophthalic acid is used as a raw material in the production of polyesters. Much of the isophthaUc acid is used for unsaturated polyesters, whereas terephthaUc acid is used almost exclusively in saturated (thermoplastic) polyesters. However, a considerable amount of isophthaUc acid is used as a minor comonomer in saturated polyesters, where the principal diacid is terephthaUc acid. The production volume of isophthaUc acid is less than 2% that of terephthahc. IsophthaUc acid was formerly produced in technical or cmde grades and only a small amount was purified. Now, however, it is all purified to a standard similar to that of terephthahc acid. [Pg.493]

Thermoplastic copolyester elastomers are generally block copolymers produced from short-chain aUphatic diols, aromatic diacids, and polyalkjlene ether-diols. They are often called polyesterether or polyester elastomers. The most significant commercial product is the copolymer from butane-l,4-diol, dimethyl terephthalate, and polytetramethylene ether glycol [25190-06-1J, which produces a segmented block copolyesterether with the following stmcture. [Pg.301]

A smaller but rapidly growing area is the use of PTMEG ia thermoplastic polyester elastomers. Formation of such polyesters iavolves the reaction of PTMEG with diacids or diesters. The diols become soft segments ia the resulting elastomeric materials. Examples of elastomeric PTMEG polyesters iaclude Hytrel (Du Pont) and Ecdel (Eastman Chemicals). [Pg.368]

Reactive (unsaturated) epoxy resins (qv) are reaction products of multiple glycidyl ethers of phenoHc base polymer substrates with methacrylic, acryhc, or fumaric acids. Reactive (unsaturated) polyester resins are reaction products of glycols and diacids (aromatic, aUphatic, unsaturated) esterified with acryhc or methacrylic acids (see POLYESTERS,unsaturated). Reactive polyether resins are typically poly(ethylene glycol (600) dimethacrylate) or poly(ethylene glycol (400) diacrylate) (see PoLYETPiERs). [Pg.428]

Titanium-cataly2ed ester interchange can be used to prepare polyesters from diester and diols as well as from diacids and diols at considerably higher temperatures. Polymer chains bearing pendant ester and hydroxy functions can be cross-linked with titanates. [Pg.142]

Polyesters. Polyesters (qv) are widely used as the matrix for conventional composites. Two resins of particular importance because of the large amounts used are (poly(ethylene terephthalate) [25038-59-9] (PET) and poly(butylene terephthalate) [24968-12-5] (PBT). Although polyesters can be made from diacids and diols by direct condensation. [Pg.37]

Azelaic, sebacic, dodecanedioic, and brassyhc acids may be used in copolyetheresteramides (111). Two patents describe additional apphcations for the C-9—C-40 diacids for the preparation of polyester carbonates (112), and the copolymerization of epoxides and carbon dioxide by reaction of either glutaric or adipic acids with zinc oxide (113). [Pg.64]

A reaction between two different monomers. Each monomer possesses at least two similar functional groups that can react with the functional groups of the other monomer. For example, a reaction of a diacid and a dialcohol (diol) can produce polyesters ... [Pg.312]

Polyesters are the most important class of synthetic fibers. In general, polyesters are produced by an esterification reaction of a diol and a diacid. Carothers (1930) was the first to try to synthesize a polyester fiber by reacting an aliphatic diacid with a diol. The polymers were not suitable because of their low melting points. However, he was successful in preparing the first synthetic fiber (nylon 66). In 1946, Whinfield and Dickson prepared the first polyester polymer by using terephthalic acid (an aromatic diacid) and ethylene glycol. [Pg.359]

Melt spinning polyesters is preferred to solution spinning because of its lower cost. Due to the hydrophobic nature of the fiber, sulfonated terephthalic acid may be used as a comonomer to provide anionic sites for cationic dyes. Small amounts of aliphatic diacids such as adipic acid may also be used to increase the dyeability of the fibers by disturbing the fiber s crystallinity. [Pg.362]

When an amine reacts with an acid chloride, an amide is formed. What would happen, though, if a diamine and a diacid chloride were allowed to react Each partner could form two amide bonds, linking more and more molecules together until a giant polyamide resulted. In the same way, reaction of a diol with a diacid would lead to a polyester. [Pg.818]

Step-growth polymers, such as polyamides and polyesters, are prepared by reactions between difunctional molecules. Polyamides (nylons) are formed by reaction between a diacid and a diamine polyesters are formed from a diacid and a diol. [Pg.826]

Hie most representative member of this class of polyesters is the low-molar-mass (M 1000-3000) hydroxy-terminated aliphatic poly(2,2/-oxydiethylene adipate) obtained by esterification between adipic acid and diethylene glycol. This oligomer is used as a macromonomer in the synthesis of polyurethane elastomers and flexible foams by reaction with diisocyanates (see Chapter 5). Hydroxy-terminated poly(f -caprolactonc) and copolyesters of various diols or polyols and diacids, such as o-phthalic acid or hydroxy acids, broaden the range of properties and applications of polyester polyols. [Pg.29]

Depending on dieir structure, properties, and syndietic methods, degradable polyesters can be divided into four groups poly(a-esters), poly(fi-esters), poly(lactones), and polyesters of aliphatic diols and diacids. [Pg.41]

Unsaturated polyesters are low-molar-mass polymers (1500-2500) obtained by the polyesterification of stoichiometric mixtures of diols and mixtures of saturated and unsaturated diacids or anhydrides (see Section 2.4.2.1). [Pg.58]


See other pages where Polyesters diacids is mentioned: [Pg.110]    [Pg.65]    [Pg.110]    [Pg.65]    [Pg.302]    [Pg.239]    [Pg.366]    [Pg.540]    [Pg.504]    [Pg.286]    [Pg.292]    [Pg.293]    [Pg.294]    [Pg.295]    [Pg.296]    [Pg.239]    [Pg.192]    [Pg.18]    [Pg.61]    [Pg.64]    [Pg.64]    [Pg.64]    [Pg.139]    [Pg.317]    [Pg.1]    [Pg.8]    [Pg.18]    [Pg.18]    [Pg.29]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Diacid

Diacids

Diol-Diacid Aliphatic Polyesters

Poly diol-diacid aliphatic polyester

Polyester derived from aromatic diacids

Polyesters diol-diacid type aliphatic

© 2024 chempedia.info