Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester lipases

Polyesters have been obtained in organic medium by polyesterification of hydroxy acids,328,329 hydroxy esters,330 stoichiometric mixtures of diols and diacids,331-333 diols and diesters,334-339 and diols and cyclic anhydrides.340 Lipases have also been reported to catalyze ester-ester interchanges in solution or in die bulk at moderate temperature.341 Since lipases obviously catalyze the reverse reaction (i.e., hydrolysis or alcoholysis of polyester), lipase-catalyzed polyesterifications can be regarded as equilibrium polycondensations taking place in mild conditions (Scheme 2.35). [Pg.83]

Keywords. Enzymatic polymerization, Polyester, Lipase, Enantioselectivity, Regioselectivity... [Pg.238]

Keywords (Co)polyesters Lipase Mechanism Polycondensation Ringopening polymerization... [Pg.55]

Sweet Polyesters Lipase-Catalyzed Condensation-Polymerizations of Alditols... [Pg.275]

Hu J., Gao W., Kulshrestha A., Gross R.A., Sweet polyesters Lipase-catalyzed condensation-polymerizations of alditols. [Pg.112]

Keywords Polyesters Lipase Polycondensation Ring opening polymerization Block copolymers Chemoenzymatic polymerization Chiral polymers... [Pg.69]

Linear polyurethanes, 26 Linear step-growth polymerizations, 13 Lipase-catalyzed polyesterifications, 83 Lipases, 82, 84 catalytic site of, 84 Liquefied MDIs, 211, 226-227 Liquid carbon dioxide, 206 Liquid-castable systems, 201 Liquid crystal devices (LCDs), alignment coating for, 269-270 Liquid crystalline aromatic polyesters, 35 Liquid crystalline polyesters, 25, 26, 48-53... [Pg.587]

Lipase-catalyzed reaction is useful for polyester synthesis and IE was employed successfully as solvent. Uyama and Kobayashi demonstrated an efficient polyester synthesis lipase-catalyzed esterification of agipic acid with butan-1,4-diol proceeded smoothly in [bmim][BF4] solvent, particularly under reduced pressure conditions (Fig. 8). Further Russel " and Nara independently reported efficient examples of the lipase-catalyzed polyester synthesis in an IE solvent system. [Pg.9]

Figure 8 Lipase-catalyzed polyester synthesis using IL solvent system. Figure 8 Lipase-catalyzed polyester synthesis using IL solvent system.
Lipase is an enzyme which catalyzes the hydrolysis of fatty acid esters normally in an aqueous environment in living systems. However, hpases are sometimes stable in organic solvents and can be used as catalyst for esterifications and transesterifications. By utihzing such catalytic specificities of lipase, functional aliphatic polyesters have been synthesized by various polymerization modes. Typical reaction types of hpase-catalyzed polymerization leading to polyesters are summarized in Scheme 1. Lipase-catalyzed polymerizations also produced polycarbonates and polyphosphates. [Pg.207]

Poly(malic acid) is a biodegradable and bioadsorbable water-soluble polyester having a carboxylic acid in the side chain. The chemoenzymatic synthesis of poly(malic acid) was achieved by the lipase-catalyzed polymerization of benzyl (3-malolactonate, followed by the debenzylation. The molecular weight of poly(benzyl (3-malolactonate) increased on copolymerizafion with a small amount of (3-PL using lipase CR catalyst. ... [Pg.208]

In polyester synthesis via ring-opening polymerizations, metal catalysts are often used. For medical applications of polyesters, however, there has been concern about harmful effects of the metallic residues. Enzymatic synthesis of a metal-free polyester was demonstrated by the polymerization of l,4-dioxan-2-one using Candida antarctica lipase (lipase CA). Under appropriate reaction conditions, the high molecular weight polymer (molecular weight = 4.1 x 10" ) was obtained. [Pg.208]

Enzymatic synthesis of aliphatic polyesters was also achieved by the ringopening polymerization of cyclic diesters. Lactide was not enzymatically polymerized under mild reaction conditions however, poly(lacfic acid) with the molecular weight higher than 1 x 10" was formed using lipase BC as catalyst at higher temperatures (80-130°C). Protease (proteinase K) also induced the polymerization however, the catalytic activity was relatively low. [Pg.209]

Lipases CA, BC, and PF catalyzed the polymerization of ethylene dode-canoate and ethylene tridecanoate to give the corresponding polyesters. The enzyme origin affected the polymerization behaviors in using lipase BC catalyst, these bislactones polymerized faster than e-CL and DDL, whereas the reactivity of these cyclic diesters was in the middle of e-CL and DDL in using lipase CA. [Pg.210]

So far, various dicarboxylic acid derivatives, dicarboxylic acids, their activated and non-activated esters, cyclic acid anhydrides, and polyanhydrides have been polymerized with glycols through lipase catalysis to give polyesters. [Pg.212]

Alkyl esters often show low reactivity for lipase-catalyzed transesterifications with alcohols. Therefore, it is difficult to obtain high molecular weight polyesters by lipase-catalyzed polycondensation of dialkyl esters with glycols. The molecular weight greatly improved by polymerization under vacuum to remove the formed alcohols, leading to a shift of equilibrium toward the product polymer the polyester with molecular weight of 2 x 10" was obtained by the lipase MM-catalyzed polymerization of sebacic acid and 1,4-butanediol in diphenyl ether or veratrole under reduced pressure. ... [Pg.213]

The enzymatic synthesis of polyesters from activated diesters was achieved under mild reaction conditions. The polymerization of bis(2,2,2-trichloroethyl) glutarate and 1,4-butanediol proceeded in the presence of PPL at room temperature in diethyl ether to produce the polyesters with molecular weight of 8.2 x 10. Vacuum was applied to shift the equilibrium forward by removal of the activated alcohol formed, leading to the production of high molecular weight polyesters. The polycondensation of bis(2,2,2-trifluoroethyl) sebacate and aliphatic diols took place using lipases BC, CR, MM, and PPL as catalyst in diphenyl ether. Under the... [Pg.213]

Divinyl esters reported first by us are efficient monomers for polyester production under mild reaction conditions. In the lipase PF-catalyzed polymerization of divinyl adipate and 1,4-butanediol in diisopropyl ether at 45°C, a polyester with molecular weight of 6.7 x 10 was formed, whereas adipic acid and diethyl adipate did not afford the polymeric materials under similar reaction conditions (Scheme 3). [Pg.214]

Aromatic polyesters were efficiently synthesized from aromatic diacid divinyl esters. Lipase CA induced the polymerization of divinyl esters of isoph-thalic acid, terephthalic acid, and p-phenylene diacetic acid with glycols to give polyesters containing aromatic moiety in the main chain. The highest molecular weight (7.2 x 10 ) was attained from a combination of divinyl isophthalate and 1,10-decanediol. Enzymatic polymerization of divinyl esters and aromatic diols also afforded the aromatic polyesters. ... [Pg.216]

A combinatorial approach for biocatalytic production of polyesters was demonstrated. A library of polyesters were synthesized in 96 deep-well plates from a combination of divinyl esters and glycols with lipases of different origin. In this screening, lipase CA was confirmed to be the most active biocatalyst for the polyester production. As acyl acceptor, 2,2,2-trifluoroethyl esters and vinyl esters were examined and the former produced the polymer of higher molecular weight. Various monomers such as carbohydrates, nucleic acids, and a natural steroid diol were used as acyl acceptor. [Pg.216]

Polyester synthesis was carried out hy insertion-dehydration of glycols into polyanhydrides using lipase CA as catalyst (Scheme 6). The insertion of 1,8-octanediol into poly(azelaic anhydride) took place at 30-60°C to give the corresponding polyester with molecular weight of several thousands. Effects of the reaction parameters on the polymer yield and molecular weight were systematically investigated. The dehydration reachon also proceeded in water. The reaction behaviors depended on the monomer structure and reaction media. [Pg.217]

Lipase-catalyzed synthesis of polyesters from cyclic anhydrides and oxi-ranes was reported. The polymerization took place by PPL catalyst and the molecular weight reached 1 x 10" under the selected reaction conditions. During the polymerizahon, the enzymatically formed acid group from the anhydride may open the oxirane ring to give a glycol, which is then reacted with the anhydride or acid by lipase catalysis, yielding the polyesters. [Pg.217]

Lipase CA also polymerized hydrophobic oxyacids efficiently. The DP value was beyond 100 in the polymerization of 16-hydroxyhexadecanoic acid, 12-hydroxy dodecanoic acid, or 10-hydroxy decanoic acid under vacuum at high temperature (90°C) for 24 h, whereas the polyester with lower molecular weight was formed from 6-hydroxyhexanoic acid under similar reaction conditions. This difference may be due to the lipase-substrate interachon. [Pg.217]

Room-temperature ionic liquids have received much attention as green designer solvents. We first demonstrated that ionic liquids acted as good medium for lipase-catalyzed production of polyesters. The polycondensation of diethyl adipate and 1,4-butanediol using lipase CA as catalyst efficiently proceeded in l-butyl-3-methylimidazolinium tetrafluoroborate or hexafluorophosphate under reduced pressure. The polymerization of diethyl sebacate and 1,4-butanediol in l-butyl-3-methylimidazolinium hexafluorophosphate took place even at room temperature in the presence of lipase BC. ... [Pg.218]

The enantioselectivity was greatly improved by the copolymerization with 7- or 13-membered non-substituted lactone using lipase CA catalyst (Scheme 8) the ee value reached ca. 70% in the copolymerization of (3-BL with DDL. ft is to be noted that in the case of lipase CA catalyst, the (5 )-isomer was preferentially reacted to give the (5 )-enriched optically active copolymer. The lipase CA-catalyzed copolymerization of 8-caprolactone (6-membered) with DDL enan-tioselectively proceeded, yielding the (/ )-enriched optically active polyester with ee of 76%. [Pg.219]

Optically active polyesters were synthesized by lipase CA-catalyzed ring-opening polymerization of racemic 4-methyl or ethyl-e-caprolactone. The (5 )-isomer was enantioselectively polymerized to produce the polyester with >95% ee. Quantitative reactivity of 4-substituted e-caprolactone using lipase CA as catalyst was analyzed. The polymerization rate decreased by a factor of 2 upon the introduction of a methyl substitutent at the 4-position. Furthermore, 4-ethyl-8-caprolactone polymerized five times slower than the 4-methyl-8-caprolactone. This reactivity difference is strongly related to the enantioselectivity. Interestingly, lipase CA displayed 5 -selectivity for 4-methyl or ethyl-8-caprolactone, and the enantioselectivity was changed to the (f )-enantiomer in the case of 4-propyl-8-caprolactone. [Pg.219]

PPF catalyzed an enantioselective polymerization of bis(2,2,2-trichloroethyl) tra 5-3,4-epoxyadipate with 1,4-butanediol in diethyl ether to give a highly optically active polyester (Scheme 9). °° The molar ratio of the diester to the diol was adjusted to 2 1 to produce the (-) polymer with enantiomeric purity of >96%. The polymerization of racemic bis(2-chloroethyl) 2,5-dibromoadipate with excess of 1,6-hexanediol using lipase A catalyst produced optically active trimer and pentamer. The polycondensation of 1,4-cyclohexanedimethanol with fumarate esters using PPL catalyst afforded moderate diastereoselectivity for the cis/trans monocondensate and markedly increased diastereoselectivity for the dicondensate product. [Pg.220]


See other pages where Polyester lipases is mentioned: [Pg.126]    [Pg.126]    [Pg.34]    [Pg.43]    [Pg.83]    [Pg.125]    [Pg.126]    [Pg.206]    [Pg.208]    [Pg.209]    [Pg.211]    [Pg.212]    [Pg.212]    [Pg.212]    [Pg.212]    [Pg.215]    [Pg.215]    [Pg.216]    [Pg.216]    [Pg.217]    [Pg.217]    [Pg.220]    [Pg.220]   
See also in sourсe #XX -- [ Pg.84 , Pg.357 , Pg.358 ]




SEARCH



Lipases polyester synthesis

Polyesters synthesis with immobilized lipase

© 2024 chempedia.info