Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction behavior

General Aspects Reaction Behavior of A-Acyliminium Ions... [Pg.803]

Normally, reactive derivatives of sulfonic acids serve to transfer electrophilic sulfonyl groups259. The most frequently applied compounds of this type are sulfonyl halides, though they show an ambiguous reaction behavior (cf. Section III.B). This ambiguity is additionally enhanced by the structure of sulfonyl halides and by the reaction conditions in the course of electrophilic sulfonyl transfers. On the one hand, sulfonyl halides can displace halides by an addition-elimination mechanism on the other hand, as a consequence of the possibility of the formation of a carbanion a to the sulfonyl halide function, sulfenes can arise after halide elimination and show electrophilic as well as dipolarophilic properties. [Pg.195]

Polyester synthesis was carried out hy insertion-dehydration of glycols into polyanhydrides using lipase CA as catalyst (Scheme 6). The insertion of 1,8-octanediol into poly(azelaic anhydride) took place at 30-60°C to give the corresponding polyester with molecular weight of several thousands. Effects of the reaction parameters on the polymer yield and molecular weight were systematically investigated. The dehydration reachon also proceeded in water. The reaction behaviors depended on the monomer structure and reaction media. [Pg.217]

Oxidations of ammonia display ignition/extinction characteristics and auto-thermal reaction behavior. At low heat supply, only low conversion is observed and temperature remains nearly constant. With increasing heat supply and approaching a certain temperature, the reaction heat generated can no longer be transferred completely totally to the reactor construction material. At this stage, the reaction starts up . Suddenly, the temperature is raised by increased heat production until heat generation and removal are in balance. The reaction can now be carried out without a need for external heat supply, namely in autothermal mode. [Pg.293]

An ignition experiment at 1-butene concentrations as high as 5% was performed to test instability in reaction behavior as an indication of unsafe operation (5% 1-butene in air 0.1 MPa 400 °C) [103]. The degree of conversion increased linearly and converged without any sign of instability. The power input corresponded to 6.5 W with an adiabatic temperature rise of more than 2000 °C. Plugging, however, was the major concern under these severe conditions. [Pg.311]

Figure 4.97 Global changes of the Belousov-Zhabotinskii reaction behavior in the capillary reactor under electrical field. (A) Reversal of the direction of the reaction zone (white stripe) propagation (0.5 mm capillary reactor) ... Figure 4.97 Global changes of the Belousov-Zhabotinskii reaction behavior in the capillary reactor under electrical field. (A) Reversal of the direction of the reaction zone (white stripe) propagation (0.5 mm capillary reactor) ...
Ansetk, K. S., Newman, S. AL and Bowman, C. N.i Polymeric Dental Composites Properties and Reaction Behavior of Multimethacrylate Dental Restorations. VoL 122, pp. 177-218. [Pg.206]

Synthesis via o-QM 3 and Reaction Behavior of 3-(5-Tocopheryl) propionic Acid... [Pg.199]

In view of the reaction behavior of l,2 i.5-oxaphosphetanes (22), treated above, it appears fitting to reconsider the mechanism of the hydroxylion induced fragmentation of p-bromophosphinic acid 6443). It was assumed that formation of the phosphinate 65 is followed by that of the four-membered heterocycle 66, which spontaneously decomposes to benzalacetophenone and phenyldioxophosphorane the latter then adds water to give the phosphonie acid 43 ... [Pg.89]

Two other results will now be pointed out which presumably also require reinterpretation in the light of the reaction behavior of iminooxophosphoranes. Thus the gas phase pyrolysis of diphenylphosphoryl azide is reported to give monomeric 92 50) and the dehydrohalogenation of phenylphosphoric adamantylamidic chloride with methylhydrazine the heterocumulene 93 51), which is even considered resistant to water. Since partly correct analytical values are available, 92 and 93 may well be oligomers. [Pg.92]

The physical situation in a fluidized bed reactor is obviously too complicated to be modeled by an ideal plug flow reactor or an ideal stirred tank reactor although, under certain conditions, either of these ideal models may provide a fair representation of the behavior of a fluidized bed reactor. In other cases, the behavior of the system can be characterized as plug flow modified by longitudinal dispersion, and the unidimensional pseudo homogeneous model (Section 12.7.2.1) can be employed to describe the fluidized bed reactor. As an alternative, a cascade of CSTR s (Section 11.1.3.2) may be used to model the fluidized bed reactor. Unfortunately, none of these models provides an adequate representation of reaction behavior in fluidized beds, particularly when there is appreciable bubble formation within the bed. This situation arises mainly because a knowledge of the residence time distribution of the gas in the bed is insuf-... [Pg.522]

Solid-state NMR spectroscopy was also used to examine the post reaction behavior of pTrMPTrA samples prepared in bulk as thin films, as described in the experimental. All of the spectra in this aging study required a minimum of 720 scans on approximately 50 mg of sample with a 100 s pulse delay to achieve adequate signal/noise. Under these conditions, reliable peak areas could be obtained from the curve fits of the carbonyl region. Figure 3 depicts the evolution of the solid state spectrum of the sample stored under N2 over time and upon heating. The area of the peak at 174 ppm for the carbonyl adjacent to the reacted double bond increases as the peak at 166 ppm for pendant unsaturation decreases. The results of the aging study are given in Table I. [Pg.32]

Reaction Behavior and Kinetic Modeling Studies of Living Radical Photopolymerizations... [Pg.51]

Since alkyllithium compounds and their carbanions have an isoelectronic structure with alkoxides, their reaction behavior with carbenes is expected to be similar to that of alkoxides, showing enhanced reactivity in both C-H insertion and hydride abstraction.35 In this reaction, the hydride abstraction cannot be followed by recombination and, therefore, can be differentiated from the insertion. Indeed, the reaction of alkyllithium compounds 70 or nitrile anions (see Section IV.B) with ethyl(phenylthio)carbenoid, which is generated by the reaction of 1-chloropropyl sulfide 69 with BuLi, takes place at the -position of 70 more or less in a similar manner giving both insertion product 71 and hydride abstraction products 72 and 73, respectively. This again supports a general rule C-H bonds at the vicinal position of a negatively charged atom are activated toward carbene insertion reactions (Scheme 22). [Pg.309]

The above-mentioned results of the SSP of PET can be generally applied to other semicrystalline polyesters, such as poly(butylene terephthalate) (PBT), poly(tri-methylene terephthalate) PTT), polyethylene naphthalate) (PEN) or any other kind of semicrystalline co-polyester, as a result of their similar reaction behaviors. Most of the studies have been focused on PET and PBT due to their industrial importance. Meanwhile, the popularity of PEN is growing on account of the outstanding properties of this particular polymer. [Pg.213]

Parallel investigations of amorphous silica and quartz were executed by Stober (173, 218, 219, 225) with many reactions. No essential difference in reaction behavior and in the packing density of the surface groups was observed. Of course, quantitative measurements were not as accurate with quartz powder as with high surface area Aerosil. [Pg.247]

These effects are most striking on silver since it is, itself, a very unreactive surface. There is every reason to expect, however, that oxygen will behave similarly on other metals. More complex reaction behavior will, of course, be observed as the intrinsic reactivity of the metal increases. Oxygen adsorbed on platinum should show similar properties. In fact the formation of surface OH groups from HjO and 0(a) was recently reported 145). The ability of platinum itself to break C-H and C-C bonds complicates oxidation mechanisms, but future work should provide a greater understanding of the relative role of surface oxygen in oxidation catalysis. [Pg.49]

Associated with the propensity to intramolecular delivery of the organocopper reagent is the benefit of high regioselectivity, since an intramolecular trajectory prohibits the alternative a-attack. This is best exemplified by the reaction behavior of the cyclic system 161 (Scheme 6.33). For this substrate, y-attack is sterically hindered. Hence, treatment of the acetate of 161 with a higher order methyl cuprate... [Pg.211]


See other pages where Reaction behavior is mentioned: [Pg.7]    [Pg.122]    [Pg.168]    [Pg.237]    [Pg.494]    [Pg.207]    [Pg.61]    [Pg.219]    [Pg.40]    [Pg.43]    [Pg.51]    [Pg.358]    [Pg.380]    [Pg.7]    [Pg.888]    [Pg.262]    [Pg.394]    [Pg.406]    [Pg.32]    [Pg.201]    [Pg.206]    [Pg.125]    [Pg.134]    [Pg.37]    [Pg.122]   
See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.424 ]




SEARCH



© 2024 chempedia.info