Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polycarbonate polymer blends

Pellow-Jarman, M. and Hetem, M., The effect of the polybutylene terephthalate constituent on the reactions occurring in PBT-polycarbonate polymer blends below their decomposition temperature, Plast. Rubber Composites Proc. Appl., 23, 31-41 (1995). [Pg.320]

Fig. 9 Japanese electronics products using the bio-based PLA/polycarbonate polymer blending... Fig. 9 Japanese electronics products using the bio-based PLA/polycarbonate polymer blending...
In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

In a molded polymer blend, the surface morphology results from variations in composition between the surface and the bulk. Static SIMS was used to semiquan-titatively provide information on the surface chemistry on a polycarbonate (PC)/polybutylene terephthalate (PBT) blend. Samples of pure PC, pure PBT, and PC/PBT blends of known composition were prepared and analyzed using static SIMS. Fn ment peaks characteristic of the PC and PBT materials were identified. By measuring the SIMS intensities of these characteristic peaks from the PC/PBT blends, a typical working curve between secondary ion intensity and polymer blend composition was determined. A static SIMS analysis of the extruded surface of a blended polymer was performed. The peak intensities could then be compared with the known samples in the working curve to provide information about the relative amounts of PC and PBT on the actual surface. [Pg.556]

Polycarbonates based on tetramethylbisphenol A are thermally stable and have a high Vicat softening point of 196°C. On the other hand they have lower impact and notched impact resistance than the normal polymer. Blends with styrene-based polymers were introduced in 1980, and compared with PC/ABS blends, are claimed to have improved hydrolytic resistance, lower density and higher heat deflection temperatures. Suggested applications are as dishes for microwave ovens and car headlamp reflectors. [Pg.579]

Impact strength (impact resistance), 10 177 of polycarbonates, 19 810-811 of styrene-based plastics, 23 362-363 Impact testing, 19 580 Impact tests, for polymer blends, 20 352... [Pg.465]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

Blending of polymers is an attractive method of producing new materials with better properties. Blends of aliphatic polyesters, especially of poly(e-CL), have been investigated extensively and have been the subject of a recent review paper [170]. Poly(e-CL) has been reported to be miscible with several polymers such as PVC, chlorinated polyethylene, SAN, bisphenol A polycarbonate, random copolymers of Vdc and VC, Vdc and AN, and Vdc/VAc, etc. A single composition-dependent Tg was obtained in the blends of each of these polymers with poly(e-CL). This is of interest as a polymeric plasticizer in these polymers. Blends of PVC and poly(e-CL) with less than 50 wt % of poly(e-CL) were homogeneous and exhibited a single Tg. These blends were soft and pliable because the inherent crystallinity of poly(e-CL) was destroyed and PVC was plasticized... [Pg.28]

It was indicated above that ABS itself is a polymer blend and actually constitutes a family of materials that differ widely as a result of the many chemical and physical variations that are possible. Interestingly, ABS has been blended with other plastic materials to achieve several new products. For example ABS has been blended with PVC, thermoplastic polyurethanes (PU), and polycarbonate. Table I shows a comparison of some of the properties of blends of ABS with these other plastics (71,73). [Pg.325]

To improve the properties of PLA, plasticizers, special additives such as chain-extenders, polymer blends, and composites are commonly investigated. Martin and Averous (10) have studied the effects of various plasticizers on the properties of PLA. Pilla et al. (11-12) have investigated the effects of chain-extenders on the foaming properties of PLA. In addition, a vast number of studies have been conducted to enhance the properties of PLA by blending it with various polymers such as polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinyl acetate, polyolefins, polystyrene, HIPS (high impact polystyrene), polyacetals, polycarbonate, and acrylonitrile butadiene styrene (ABS) (13-26). [Pg.251]

Polymer blends based on a polyester and a polycarbonate have been shown to be immiscible provided no transesterification reaction occurs (Porter Wang, 1992). Heat treatment of the same blends yielded different degrees of compatibility depending on the temperature and duration of the treatment, as well as on the presence and type of catalyst. This method has been successfully used to increase the compatibility of different polymers with poly(bisphenol-A-carbonate) (PC). [Pg.138]

Polyesters also are used in various polymer blends such as polycarbonate/poly(butylene terephthalate), poly(butylene terephthalate/acrylonitrile-styrene-acrylic) blends, poly(vinyl chloride)/poly(ethylene terephthalate), etc. Pyrolysis results on poly(vinyl chloride)/ poly(ethylene terephthalate) have been reported [64] showing that the two components influence each other, chloroesters of terephthaiic and benzoic acids being found in the pyrolysate. [Pg.552]

Attempts to add fillers to polymer blends produced interesting results. Carbon black was added to a polymer blend containing polycarbonate and polypropylene. Carbon black is known to act as a nucleating agent in polypropylene, however, no increase in the temperature of crystallization was observed. Morphological studies showed that carbon black was preferentially located in the polycarbonate phase therefore it did not affect the nucleation of polypropylene. [Pg.492]

The effect of dissolved CO2 on the miscibility of polymer blends and on phase transitions of block copolymers has been measured with spectroscopy and scattering (40). The shifts in phase diagrams with CO2 pressure can be pronounced. Polymer blends may be trapped kinetically in metastable states before they have time to phase separate. Metastable polymer blends of polycarbonate (PC) and poly(styrene-cn-acrylonitiile) were formed with liquid and supercritical fluid CO2 in the PCA process, without the need for a surfactant. Because of the rapid mass transfer between the CO2 phase and the solution phase, the blends were trapped in a metastable state before they... [Pg.238]


See other pages where Polycarbonate polymer blends is mentioned: [Pg.261]    [Pg.34]    [Pg.807]    [Pg.7]    [Pg.400]    [Pg.757]    [Pg.261]    [Pg.34]    [Pg.807]    [Pg.7]    [Pg.400]    [Pg.757]    [Pg.289]    [Pg.469]    [Pg.186]    [Pg.104]    [Pg.653]    [Pg.690]    [Pg.483]    [Pg.381]    [Pg.342]    [Pg.345]    [Pg.561]    [Pg.201]    [Pg.129]    [Pg.109]    [Pg.217]    [Pg.236]    [Pg.560]    [Pg.289]    [Pg.469]    [Pg.298]    [Pg.778]    [Pg.24]    [Pg.331]    [Pg.352]    [Pg.16]    [Pg.91]    [Pg.350]    [Pg.365]    [Pg.313]   
See also in sourсe #XX -- [ Pg.338 , Pg.339 , Pg.369 ]




SEARCH



Polycarbonate blends

Polycarbonate polymer

Polymer blends with polycarbonates

Polymers polycarbonates)

© 2024 chempedia.info