Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyacrylic concentrations

After 5 min, during which the alamethicin equilibrated with the lipid bilayer and its CD spectrum did not change, different amounts of 0.1 N (normality equals molarity in monomeric units) of degree of polymerization 100,000, sodium polyacrylate (PA-) solution were added. Free alamethicin in the presence of salt tends to interact with PA- to form gels. Lack of gelation with added PA- indicates that the alamethicin is incorporated into the membranes. The final polyacrylate concentrations were between 0 and 0.1 N. The concentrations of Na+ and glucose added up to 0.1 M to maintain isotonicity. Due to the permeability of alamethicin channels to small ions, different polyacrylate concentrations resulted in different Donnan potentials across the membrane. [Pg.116]

Figure 5a shows the CD spectra of alamethicin for different electric potentials either positive inside the vesicles (polyacrylate added to vesicles with low salt content and with alamethicin embedded in the membrane) or positive outside (PA in the vesicles). When the polyacrylate concentration outside increases, we may notice the decrease in the absolute value of the CD signal at 220 nm and the appearance of a shoulder at shorter wavelengths. When the potential is positive outside of the vesicle, the effect is reversed that is, the CD band at around 220 nm is increased. The effect does not... [Pg.124]

Other. A large variety of additives are used in paper-coatiag colors primarily to modify the physical properties of the colors (102). At high soHds concentrations in water, mineral pigment particles tend to associate and form viscous pastes. Dispersants (qv) are used to prevent this and to provide low viscosity slurries. Common dispersants include polyphosphates and sodium polyacrylate [9003-04-7]. Various water-soluble polymers are added to coatiag colors and act as water-retention agents and as rheology modifiers. [Pg.22]

Low molecular weight (1000—5000) polyacrylates and copolymers of acryflc acid and AMPS are used as dispersants for weighted water-base muds (64). These materials, 40—50% of which is the active polymer, are usually provided in a Hquid form. They are particularly useful where high temperatures are encountered or in muds, which derive most of their viscosity from fine drill soHds, and polymers such as xanthan gum and polyacrylamide. Another high temperature polymer, a sulfonated styrene maleic—anhydride copolymer, is provided in powdered form (65,66). AH of these materials are used in relatively low (ca 0.2—0.7 kg/m (0.5—2 lb /bbl)) concentrations in the mud. [Pg.180]

Acrylate and acrylamide polymers have several uses in drilling fluids, one of which is for filtration control. Sodium polyacrylates [9003-04-7] having molecular weights near 250,000 are exceUent temperature-stable filtration control agents for both fresh- and salt water muds, provided the concentration of water-soluble calcium is <400 mg/L (83). The calcium ions are precipitated using a carbonate such as soda ash, before adding the polyacrylate at concentrations up to ca 6 kg/m (3 Ib/bbl). [Pg.181]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

Water-soluble polymers and polyelectrolytes (e.g., polyethylene glycol, polyethylene imine polyacrylic acid) have been used success-hilly in protein precipitations, and there has been some success in affinity precipitations wherein appropriate ligands attached to polymers can couple with the target proteins to enhance their aggregation. Protein precipitation can also be achieved using pH adjustment, since proteins generally exhibit their lowest solubility at their isoelectric point. Temperature variations at constant salt concentration allow for frac tional precipitation of proteins. [Pg.2060]

We have also examined the effect of stabilizer (i.e., polyacrylic acid) on the dispersion polymerization of styrene (20 ml) initiated with AIBN (0.14 g) in an isopropanol (180 ml)-water (20 ml) medium [93]. The polymerizations were carried out at 75 C for 24 h, with 150 rpm stirring rate by changing the stabilizer concentration between 0.5-2.0 g/dL (dispersion medium). The electron micrographs of the final particles and the variation of the monomer conversion with the polymerization time at different stabilizer concentrations are given in Fig. 12. The average particle size decreased and the polymerization rate increased by the increasing PAAc concentra-... [Pg.205]

Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974). Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974).
Phase diagrams of a polyacrylate-phosphonate system with temperature and calcium ion concentration can be established with turbidimetric measurements [1830]. Conductometric titrations also are suitable to characterize the phase behavior of scale inhibitors [514] (Table 7-2). [Pg.107]

Solid-phase microextraction (SPME) consists of dipping a fiber into an aqueous sample to adsorb the analytes followed by thermal desorption into the carrier stream for GC, or, if the analytes are thermally labile, they can be desorbed into the mobile phase for LC. Examples of commercially available fibers include 100-qm PDMS, 65-qm Carbowax-divinylbenzene (CW-DVB), 75-qm Carboxen-polydimethylsiloxane (CX-PDMS), and 85-qm polyacrylate, the last being more suitable for the determination of triazines. The LCDs can be as low as 0.1 qgL Since the quantity of analyte adsorbed on the fiber is based on equilibrium rather than extraction, procedural recovery cannot be assessed on the basis of percentage extraction. The robustness and sensitivity of the technique were demonstrated in an inter-laboratory validation study for several parent triazines and DEA and DIA. A 65-qm CW-DVB fiber was employed for analyte adsorption followed by desorption into the injection port (split/splitless) of a gas chromatograph. The sample was adjusted to neutral pH, and sodium chloride was added to obtain a concentration of 0.3 g During continuous... [Pg.427]

Brandt [200] has extracted tri(nonylphenyl) phosphite (TNPP) from a styrene-butadiene polymer using iso-octane. Brown [211] has reported US extraction of acrylic acid monomer from polyacrylates. Ultrasonication was also shown to be a fast and efficient extraction method for organophosphate ester flame retardants and plasticisers [212]. Greenpeace [213] has recently reported the concentration of phthalate esters in 72 toys (mostly made in China) using shaking and sonication extraction methods. Extraction and analytical procedures were carefully quality controlled. QC procedures and acceptance criteria were based on USEPA method 606 for the analysis of phthalates in water samples [214]. Extraction efficiency was tested by spiking blank matrix and by standard addition to phthalate-containing samples. For removal of fatty acids from the surface of EVA pellets a lmin ultrasonic bath treatment in isopropanol is sufficient [215]. It has been noticed that the experimental ultrasonic extraction conditions are often ill defined and do not allow independent verification. [Pg.80]

The proposed mechanism of effect of surfactant and ultrasound is reported in Fig. 7.5. The long chain surfactant molecules attach to surface of nanoparticles due to physical adsorption. Only thin layer is adsorbed onto the CaC03 nanoparticles. Due to presence of ultrasound and use of surfactant will control the nucleation. Surfactant keeps the particles away from each other by preventing flocculation due to change in surface tension of reaction mass. The concentration of additives was changed from 0.2 to 1.0 g/L. Addition of 0.2 g/L tripolyphosphate shows the increase in the rate of precipitation which is determined from the Ca(OH)2 consumption. Polyacrylic acid shows the least rate of precipitation (0.115 mol/1), which... [Pg.180]

Flocculation is indeed dependent on polymer adsorption, and there are hypotheses correlating the two phenomena, but often these have been put forth without detailed measurement of the two phenomena simultaneously (10-13). In this paper, flocculation is investigated as a function of polymer and solution properties and hydrodynamic conditions by measuring different properties of the system, including adsorption, using well characterized kaolinite and polymer samples prepared specifically for this purpose. Also, the role of concentration and charge density of polyacrylamide and polyacrylamide-polyacrylic acid co-polymers in determining kaolinite flocculation is examined under controlled hydrodynamic conditions. [Pg.394]

In recent years, a new line of hydrophobic gangue depressants were developed, based on a mixture of guar gums and low-molecular-weight polyacrylates modified with organic acid, which are extremely effective. With the use of these depressants, the grade of the PGM concentrate could increase from 100 up to 40 g/t without any loss in recovery. [Pg.27]

The highest PGM recovery was achieved using collector PM443, which is an amine + ester-modified xanthate. Among the chromium slime depressants evaluated, modified mixtures of organic acids, RQ depressants and a low-molecular-weight polyacrylic acid + pyrophosphate mixture were there. The effect of different chromium depressants on chromium assays of the PGM concentrate are illustrated in Figure 18.7. [Pg.35]

In this investigation, you will examine three different polymers. First, you will examine the addition polymer sodium polyacrylate. This polymer contains sodium ions trapped inside the three-dimensional structure of the polymer. When placed in distilled water, the concentration of sodium ions inside the polymer is much greater than the concentration of sodium ions outside the polymer. The concentration imbalance causes water molecules to move hy diffusion into the polymer. As a result, the polymer absorbs many times its own mass in distilled water. [Pg.86]

A polyelectrolyte solution contains the salt of a polyion, a polymer comprised of repeating ionized units. In dilute solutions, a substantial fraction of sodium ions are bound to polyacrylate at concentrations where sodium acetate exhibits only dissoci-atedions. Thus counterion binding plays a central role in polyelectrolyte solutions [1], Close approach of counterions to polyions results in mutual perturbation of the hydration layers and the description of the electrical potential around polyions is different to both the Debye-Huckel treatment for soluble ions and the Gouy-Chapman model for a surface charge distribution, with Manning condensation of ions around the polyelectrolyte. [Pg.57]

The following types of mucoadhesive preparations have been evaluated for ocular drug delivery hydrogels, viscous liquids, solids (inserts), and particulate formulations [57]. Hui and Robinson [58] introduced hydrogels consisting of cross-linked polyacrylic acid for ocular delivery of progesterone in rabbits. These preparations increased progesterone concentrations in the aqueous humor four times over aqueous suspensions. [Pg.181]

Analytical grade NaCl, polyvinylchloride (Aldrich, high mol. wt.), bls(2-ethylhexyl)phtalate (GR, Aldrich), and tetrahydrofuran (AR, BDH Chemicals) were used without further purification. Polyacrylic acid, mol. wt. 250,000 (Aldrich) was titrated with NaOH to obtain a stock solution of NaPAA of known carboxylate concentration. [Pg.227]


See other pages where Polyacrylic concentrations is mentioned: [Pg.59]    [Pg.56]    [Pg.142]    [Pg.117]    [Pg.59]    [Pg.56]    [Pg.142]    [Pg.117]    [Pg.495]    [Pg.180]    [Pg.218]    [Pg.50]    [Pg.129]    [Pg.309]    [Pg.48]    [Pg.432]    [Pg.129]    [Pg.196]    [Pg.247]    [Pg.74]    [Pg.134]    [Pg.180]    [Pg.195]    [Pg.267]    [Pg.17]    [Pg.154]    [Pg.197]    [Pg.99]    [Pg.176]    [Pg.37]    [Pg.642]    [Pg.99]    [Pg.52]    [Pg.225]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Polyacrylate

Polyacrylates

Polyacrylic

Polyacrylics

© 2024 chempedia.info