Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly standard

Class A conforms to specifications in ASTM E694 for standard taper stopcocks and to ASTM E287 for Teflon or poly-tetrafluoroethylene stopcock plugs. The 10-mL size meets the requirements for ASTM D664. ... [Pg.1180]

J. W. Hastie and C. L. McBee, Mechanistic Studies ofFriphenylphosphine Oxide-Poly(ethylene terephthalate) and FelatedFlame Fetardant Systems, Feport NBSIF 75-741, Nad. Buieau of Standards Washington, D.C., 1975. [Pg.482]

Until 1990 the EPA maintained a Hst of chemicals suitable for potable water treatment ia the United States. Siace then the entire question of certification and standards has been turned over to a group of organi2ations headed by the National Sanitation Eoundation, which has issued voluntary standards. As of January 1992, standards had been issued for most of the principal inorganic products, but only for two polymers, poly(DADMAC) and Epi-DMA (epichl orohydrin dimethyl amine) polymers (78). Certifications for commercial products meeting specified standards are issued by the National Sanitation Eoundation, Underwriter Laboratories, and Risk Eocus/Versar (79). [Pg.37]

Because the chemical stmcture of poly(phenylene sulfide) [9016-75-5] (PPS) does not fall into any of the standard polymer classes, the Federal Trade Commission granted the fiber the new generic name of Sulfar. The fiber has excellent chemical and high temperature performance properties (see... [Pg.70]

Analysis for Poly(Ethylene Oxide). Another special analytical method takes advantage of the fact that poly(ethylene oxide) forms a water-insoluble association compound with poly(acryhc acid). This reaction can be used in the analysis of the concentration of poly(ethylene oxide) in a dilute aqueous solution. Ereshly prepared poly(acryhc acid) is added to a solution of unknown poly(ethylene oxide) concentration. A precipitate forms, and its concentration can be measured turbidimetricaHy. Using appropriate caUbration standards, the precipitate concentration can then be converted to concentration of poly(ethylene oxide). The optimum resin concentration in the unknown sample is 0.2—0.4 ppm. Therefore, it is necessary to dilute more concentrated solutions to this range before analysis (97). Low concentrations of poly(ethylene oxide) in water may also be determined by viscometry (98) or by complexation with KI and then titration with Na2S202 (99). [Pg.343]

ASTM D4434, Standard Specification for Poly(Vinyl Chloride) Sheet Roofing, ASTM, Philadelphia, Pa. [Pg.217]

Property Polystyrene (PS) Poly(styrene-i) (j-acrjio-nitrile ) (SAN) Glass-fil led PS High impact PS HIPS Acrylonitrile— butadiene—styrene terpolymer (ABS) Type 1 Type 2 Standard ABS Super ABS... [Pg.503]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

Org inic Esters. An unlimited number of organic esters can be prepared by reactions of poly(vinyl alcohol) employing standard synthesis (82,84). Chloroformate esters react with poly(vinyl alcohol) to yield poly(vinyl carbonates) (118). [Pg.481]

Stanax 1166 Standard Chemical Products Cationic antistatic softeners poly amine resin... [Pg.294]

Isobutjiene was first polymerized ia 1873. High molecular weight polymer was later synthesized at I. G. Farben by decreasiag the polymerization temperature to —75°, but the saturated, unreactive polymer could not be cross-linked iato a useful synthetic elastomer. It was not until 1937 that poly(isobutylene- (9-isoprene) [9010-85-9] or butyl mbber was iavented at the Standard Oil Development Co. (now Exxon Chemical Co.) laboratories (1). [Pg.480]

Whilst solving some ecological problems of metals micro quantity determination in food products and water physicochemical and physical methods of analysis are employed. Standard mixture models (CO) are necessary for their implementation. The most interesting COs are the ones suitable for graduation and accuracy control in several analysis methods. Therefore the formation of poly functional COs is one of the most contemporary problems of modern analytical chemistry. The organic metal complexes are the most prospective class of CO-based initial substances where P-diketonates are the most appealing. [Pg.405]

Hydrolysis studies compared a polycarbonate urethane with a poly(tetramethyl-ene adipate) urethane and a polyether urethane based on PTMEG. After 2 weeks in 80°C water, the polycarbonate urethane had the best retention of tensile properties [92], Polycarbonates can hydrolyze, although the mechanism of hydrolysis is not acid-catalyzed, as in the case of the polyesters. Polycarbonate polyurethanes have better hydrolysis resistance than do standard adipate polyurethanes, by virtue of the highest retention of tensile properties. It is interesting to note in the study that the PTMEG-based urethanes, renowned for excellent hydrolysis resistance, had lower retention of physical properties than did the polycarbonate urethanes. [Pg.808]

FIGURE 9.22 Analysis of poly(vinyl pyrrolidone). Eluent 0.1 M Tris buffer, pH 7. Flow rate I ml/ min. Columns PSS Suprema 10 /itm, 100 + 1000, 8 x 300 mm. Oven temp 30°C. Detection Rl. Standards PSS polyvinylpyridin standards. [Pg.296]

FIGURE 9.24 Analysis of ultrahigh poly(ethylene oxide), MW about 37 million. Eluent O.OS M NaNOj. Flow rate 0.3 ml/min. Columns PSS Suprema 20 /tim, 30000, 8 x 300 mm. Oven temp 30°C. Detector Rl. Standards PSS PEO standards. [Pg.297]

FIGURE 9.28 Room temperature analysis of poly(amide-6). Columns PSS PFG 100 + 1000. Eluent TFE + 0.1 M NatFat. Temp 2S°C. Detection Rl. Calibration PSS PA-6 standards (broad). [Pg.300]

Smaller diameter columns are especially useful when expensive solvents are used. Figure 11.3 shows the analysis of poly (1,4-butylene terephthalate) using a Waters Alliance narrow-bore GPC system, quantitated against narrow polymethylmethacrylate standards. In this case, the solvent used is hexaflu-oro-2-isopropanol with 0.05 M sodium trifluoroacetic acid at a flow rate of... [Pg.333]

As stated in Section I, columns should be selected so the low molar mass portions of the samples in question can be sufficiently separated from the elution interval of the system peaks. This task cannot always be accomplished, e.g., dimethylacetamide often replaces dimethylformamide as a GPC eluent the analyzed, mostly polar, samples require a neutral salt (e.g., FiBr) (7). The calibration is usually carried out with poly(methylmethacrylate) standards... [Pg.439]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]

Commercial grades of PVP, K-15, K-30, K-90, and K-120 and the quaternized copolymer of vinylpyrrolidone and dimthylaminoethylmethacrylate (poly-VP/ DMAEMA) made by International Specialty Products (ISP) were used in this study. PEO standard calibration kits were purchased from Polymer Laboratories Ltd. (PL), American Polymer Standards Corporation (APSC), Polymer Standards Service (PSS), and Tosoh Corporation (TSK). In addition, two narrow NIST standards, 1923 and 1924, were used to evaluate commercial PEO standards. Deionized, filtered water, and high-performance liquid chromatography grade methanol purchased from Aldrich or Fischer Scientific were used in this study. Lithium nitrate (LiN03) from Aldrich was the salt added to the mobile phases to control for polyelectrolyte effects. [Pg.501]

Commercial narrow standards [such as poly(ethylene glycol) (pEG), polystyrene sulfonate, pAA, poly w-vinyl pyrrolidinone, dextrans] are available from American Polymer Standards Corporation, Polymer Laboratories, Polymer Standards Service USA, Toyo Soda, and others. While these standards are often not as narrow as pSty or pMMA that has been anionically polymerized, they are acceptable for narrow standard calibrations. [Pg.541]


See other pages where Poly standard is mentioned: [Pg.537]    [Pg.431]    [Pg.377]    [Pg.447]    [Pg.25]    [Pg.523]    [Pg.548]    [Pg.261]    [Pg.343]    [Pg.354]    [Pg.365]    [Pg.367]    [Pg.460]    [Pg.137]    [Pg.82]    [Pg.410]    [Pg.463]    [Pg.487]    [Pg.91]    [Pg.108]    [Pg.412]    [Pg.881]    [Pg.335]    [Pg.380]    [Pg.209]    [Pg.412]    [Pg.294]    [Pg.327]   
See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Poly standard characterization

© 2024 chempedia.info