Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly dispersion polymerization

Paine et al. [99] tried different stabilizers [i.e., hydroxy propylcellulose, poly(N-vinylpyrollidone), and poly(acrylic acid)] in the dispersion polymerization of styrene initiated with AIBN in the ethanol medium. The direct observation of the stained thin sections of the particles by transmission electron microscopy showed the existence of stabilizer layer in 10-20 nm thickness on the surface of the polystyrene particles. When the polystyrene latexes were dissolved in dioxane and precipitated with methanol, new latex particles with a similar surface stabilizer morphology were obtained. These results supported the grafting mechanism of stabilization during dispersion polymerization of styrene in polar solvents. [Pg.205]

Okubo et al. [87] used AIBN and poly(acrylic acid) (Mw = 2 X 10 ) as the initiator and the stabilizer, respectively, for the dispersion polymerization of styrene conducted within the ethyl alcohol/water medium. The ethyl alcohol-water volumetric ratio (ml ml) was changed between (100 0) and (60 40). The uniform particles were obtained in the range of 100 0 and 70 30 while the polydisperse particles were produced with 35 65 and especially 60 40 ethyl alcohol-water ratios. The average particle size decreased form 3.8 to 1.9 /xm by the increasing water content of the dispersion medium. [Pg.207]

We have studied the effect of monomer concentration in the dispersion polymerization of styrene carried out in alcohol-water mixtures as the dispersion media. We used AIBN and poly(acrylic acid) as the initiator and the stabilizer, respectively, and we tried isopropanol, 1-butanol, and 2-butanol as the alcohols [89]. The largest average particle size values were obtained with the highest monomer-dispersion medium volumetric ratios in 1-butanol-water medium having the alcohol-water volumetric ratio of 90 10. The SEM micrographs of these particles are given in Fig. 15. As seen here, a certain size distribution by the formation of small particles, possibly with a secondary nucleation, was observed in the poly-... [Pg.208]

In another study, uniform composite polymethyl-methacrylate/polystyrene (PMMA/PS) composite particles in the size range of 1-10 fim were prepared by the seeded emulsion polymerization of styrene [121]. The PMMA seed particles were initially prepared by the dispersion polymerization of MMA by using AIBN as the initiator. In this polymerization, poly(7V-vinyl pyrolli-done) and methyl tricaprylyl ammonium chloride were used as the stabilizer and the costabilizer, respectively, in the methanol medium. Seed particles were swollen with styrene monomer in a medium comprised of seed particles, styrene, water, poly(7V-vinyl pyrollidone), Polywet KX-3 and aeorosol MA emulsifiers, sodium bicarbonate, hydroquinone inhibitor, and azobis(2-methylbu-... [Pg.219]

For example, the parameters g = 0.77, h = 0.94, p = 1.4, and C = 0.158 measured for a polymer sample and compared with the plots in Figures 7.11 through 7.13 were most consistent with athree-arm star monodisperse polymer a poly disperse three-arm star would have g= 1.12,/ = 1.05,p= 1.6, and C close to 0.2. °° The second example was poly(vinyl acetate) (PVAc) prepared by emulsion polymerization. Since no data for linear equivalent were available, g and h were not calculated. At lower conversion/MW p= 1.84 was found, only slightly higher than the theoretically expected p = 1.73 for a randomly branched architecture, p slightly decreased with increasing M, indicating... [Pg.209]

Morphology of the enzymatically synthesized phenolic polymers was controlled under the selected reaction conditions. Monodisperse polymer particles in the sub-micron range were produced by HRP-catalyzed dispersion polymerization of phenol in 1,4-dioxane-phosphate buffer (3 2 v/v) using poly(vinyl methyl ether) as stabihzer. °° ° The particle size could be controlled by the stabilizer concentration and solvent composition. Thermal treatment of these particles afforded uniform carbon particles. The particles could be obtained from various phenol monomers such as m-cresol and p-phenylphenol. [Pg.238]

The preparation by dispersion polymerization of the microsphere sample employed in this study was previously described [8]. The microsphere sample utilized in this study has a monomodal diameter distribution with mean diameter value d= 3.09 pm and standard deviation dsdev= 0-74 pm. The microsphere surface is covered by a poly(methacrylic acid-co-ethylacrylate) whose percent by weight is 1.1... [Pg.972]

PVA Particles. Dispersions were prepared in order to examine stabilization for a core polymer having a glass transition temperature below the dispersion polymerization temperature. PVA particles prepared with a block copolymer having M PS) x 10000 showed a tendency to flocculate at ambient temperature during redispersion cycles to remove excess block copolymer, particularly if the dispersion polymerization had not proceeded to 100 conversion of monomer. It is well documented that on mixing solutions of polystyrene and poly(vinyl acetate) homopolymers phase separation tends to occur (10,11), and solubility studies (12) of PS in n-heptane suggest that PS blocks with Mn(PS) 10000 will be close to dissolution when dispersion polymerizations are performed at 3 +3 K. Consequently, we may postulate that for soft polymer particles the block copolymer is rejected from the particle because of an incompatibility effect and is adsorbed at the particle surface. If the block copolymer desorbs from the particle surface, then particle agglomeration will occur unless rapid adsorption of other copolymer molecules occurs from a reservoir of excess block copolymer. [Pg.277]

De Simone et al. synthesized poly(fluoroalkyl acrylate)-based block copolymers for use as lipophilic/C02-philic surfactants for carbon dioxide applications [181]. The particle diameter and distribution of sizes during dispersion polymerization in supercritical carbon dioxide were shown to be dependent on the nature of the stabilizing block copolymer [182]. [Pg.105]

Here, we focus on one class ofblock copolymers synthesized by this method polystyrene-6-poly(vinylperfluorooctanic acid ester) block copolymers (Figure 10.33). After describing the synthesis and characterization, we will treat some properties and the potential applications of this new class ofblock copolymers. The amphiphilicity of the polymers is visualized by the ability to form micelles in diverse solvents that are characterized by dynamic light scattering (DLS). Then the use of these macromolecules for dispersion polymerization in very unpolar media is demonstrated by the polymerization of styrene in 1,1,2-trichlorotrifluoroethane (Freon 113). [Pg.153]

Kreuter and Speiser [77] developed a dispersion polymerization producing adjuvant nanospheres of polymethylmethacrylate) (PMMA). The monomer is dissolved in phosphate buffered saline and initiated by gamma radiation in the presence and absence of influenza virions. These systems showed enhanced adjuvant effect over aluminum hydroxide and prolonged antibody response. PMMA particles could be distinguished by TEM studies and the particle size was reported elsewhere to be 130 nm by photon correlation spectroscopy [75], The particle size could be reduced, producing monodisperse particles by inclusion of protective colloids, such as proteins or casein [40], Poly(methylmethacrylate) nanoparticles are also prepared... [Pg.4]

Microspheres by solvent extraction method were obtained with rate of mixing equal 300 rev/s. Particles by spray drying were produced with spray dryer operated with an inlet temperature of 50°C and outlet temperature of 45°C. The air flow indicator was set at 700 and the aspirator at 5. The polymer solution (concentration 0.5% wt/v) was supplied at 10 mL/min. The concentrations of monomer, initiator, and surfactant in ring-opening dispersion polymerization leading to microspheres were as follows [Lc]o = 2.77 10 mol/L, [tin(II) 2-ethyUiexanoate]o = 4.9 10 mol/L, [poly(DA-CL)] = 1.6 g/L. [Pg.272]

Dispersion polymerization involves an initially homogeneous system of monomer, organic solvent, initiator, and particle stabilizer (usually uncharged polymers such as poly(A-vinyl-pyrrolidinone) and hydroxypropyl cellulose). The system becomes heterogeneous on polymerization because the polymer is insoluble in the solvent. Polymer particles are stabilized by adsorption of the particle stabilizer [Yasuda et al., 2001], Polymerization proceeds in the polymer particles as they absorb monomer from the continuous phase. Dispersion polymerization usually yields polymer particles with sizes in between those obtained by emulsion and suspension polymerizations—about 1-10 pm in diameter. For the larger particle sizes, the reaction characteristics are the same as in suspension polymerization. For the smallest particle sizes, suspension polymerization may exhibit the compartmentalized kinetics of emulsion polymerization. [Pg.298]

Here we discuss dispersion polymerizations that are not related to vinyl monomers and radical polymerization. The first one is the ring-opening polymerization of e-caprolactone in dioxane-heptane (30). A graft copolymer, poly(dodecyl acrylate)-g-poly(e-caprolactone), is used as a stabilizer. The polymerization proceeds via anionic or pseudoanionic mechanism initiated by diethylaluminum ethoxide or other catalysts. The size of poly(caprolactone) particles depends on the composition of stabilizer, ranging from 0.5 to 5 i,m. Lactide was also polymerized in a similar way. Poly(caprolactone) and poly(lactide) particles with a narrow size distribution are expected to be applied as degradable carriers of drugs and bioactive compounds. [Pg.620]

Dispersion polymerizations of methyl methacrylate ntUizing poly(l,l,-dihydroper-fluorooctyl acrylate) as a steric stabilizer in snpercritical CO2 were carried out in the presence of helium. Particle size and particle size distribution were found to be dependent on the amonnt of inert helium present. Particle sizes ranging from 1.64 to 2.66 pm were obtained with varions amounts of helium. Solvatochromic investigations using 9-(a-perflnoroheptyl-p,p-dicyanovinyl)julolidine indicated that the solvent strength of CO2 decreases with increasing helium concentration. This effect was confirmed by calcnlations of Hildebrand solubility parameters (Hsiao and DeSimone, 1997). [Pg.153]


See other pages where Poly dispersion polymerization is mentioned: [Pg.140]    [Pg.203]    [Pg.204]    [Pg.207]    [Pg.207]    [Pg.210]    [Pg.212]    [Pg.218]    [Pg.222]    [Pg.797]    [Pg.10]    [Pg.163]    [Pg.13]    [Pg.43]    [Pg.62]    [Pg.63]    [Pg.359]    [Pg.267]    [Pg.268]    [Pg.319]    [Pg.202]    [Pg.212]    [Pg.213]    [Pg.270]    [Pg.271]    [Pg.272]    [Pg.278]    [Pg.293]    [Pg.33]    [Pg.54]    [Pg.155]    [Pg.619]    [Pg.620]    [Pg.649]    [Pg.183]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Dispersion polymerization

Dispersion polymerization dispersions

Poly , polymeric

Poly dispersability

Polymeric dispersity

Polymerization poly

© 2024 chempedia.info