Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly concentration

Figure C2.1.8. Reduced osmotic pressure V l(RTc as a function of the polymer weight concentration for solutions of poly(a-metliylstyrene) in toluene at 25 °C. The molecular weight of poly(a-metliylstyrene) varies... Figure C2.1.8. Reduced osmotic pressure V l(RTc as a function of the polymer weight concentration for solutions of poly(a-metliylstyrene) in toluene at 25 °C. The molecular weight of poly(a-metliylstyrene) varies...
Ammonium sulfide (colorless), (NH4)2S — saturated pass H2S through 200 mL of concentrated NH4OH in the cold until no more gas is dissolved, add 200 mL NH4OH and dilute with water to a liter the addition of 15 g of sulfur is sufficient to make the poly sulfide. [Pg.1187]

The following data were obtained on the same system described in Example 3.6. This time the copolymer (C) concentration is fixed at 25% by weight and the proportions of poly butadiene (B) and polyisoprene (I) are varied ... [Pg.196]

Figure 7.10 shows the 60-MHz spectra of poly (methyl methacrylate) prepared with different catalysts so that predominately isotactic, syndiotactic, and atactic products are formed. The three spectra in Fig. 7.10 are identified in terms of this predominant character. It is apparent that the spectra are quite different, especially in the range of 5 values between about 1 and 2 ppm. Since the atactic polymer has the least regular structure, we concentrate on the other two to make the assignment of the spectral features to the various protons. [Pg.482]

The molecular weight of a polymer can be controlled through the use of a chain-transfer agent, as well as by initiator concentration and type, monomer concentration, and solvent type and temperature. Chlorinated aUphatic compounds and thiols are particularly effective chain-transfer agents used for regulating the molecular weight of acryUc polymers (94). Chain-transfer constants (C at 60°C) for some typical agents for poly(methyl acrylate) are as follows (87) ... [Pg.167]

Alumina Trihydrate. Alumina trihydrate is usually used as a secondary flame retardant in flexible PVC because of the high concentration needed to be effective. As a general rule the oxygen index of flexible poly(vinyl chloride) increases 1% for every 10% of alumina trihydrate added. The effect of alumina trihydrate on a flexible poly(vinyl chloride) formulation containing antimony oxide is shown in Figure 5. [Pg.461]

Formaldehyde is produced and sold as water solutions containing variable amounts of methanol. These solutions are complex equiUbrium mixtures of methylene glycol, CH2(OH)2, poly(oxymethylene glycols), and hemiformals of these glycols. Ultraviolet spectroscopic studies (13—15) iadicate that even ia highly concentrated solutions the content of unhydrated HCHO is <0.04 wt%. [Pg.490]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

The selectivity of pervaporation membranes varies considerably and has a critical effect on the overall separation obtained. The range of results that can be obtained for the same solutions and different membranes is illustrated in Figure 41 for the separation of acetone from water using two types of membrane (89). The figure shows the concentration of acetone in the permeate as a function of the concentration in the feed. The two membranes shown have dramatically different properties. The siUcone mbber membrane removes acetone selectively, whereas the cross-linked poly(vinyl alcohol) (PVA) membrane removes water selectively. This difference occurs because siUcone mbber is hydrophobic and mbbery, thus permeates the acetone preferentially. PVA, on the other hand, is hydrophilic and glassy, thus permeates the small hydrophilic water molecules preferentially. [Pg.86]

Fig. 41. The pervaporation separation of acetone—water mixtures achieved with a water-selective poly(vinyl alcohol) (PVA) membrane and with an acetone-selective siUcone mbber membrane. The PVA membrane is best suited to removing small amounts of water from a concentrated acetone solution, whereas the siUcone mbber membrane is best suited to removing small amounts of acetone from a dilute acetone stream (89). Fig. 41. The pervaporation separation of acetone—water mixtures achieved with a water-selective poly(vinyl alcohol) (PVA) membrane and with an acetone-selective siUcone mbber membrane. The PVA membrane is best suited to removing small amounts of water from a concentrated acetone solution, whereas the siUcone mbber membrane is best suited to removing small amounts of acetone from a dilute acetone stream (89).
The acetone-selective, siUcone mbber membrane is best used to treat dilute acetone feed streams and concentrate most of the acetone in a small volume of permeate. The water-selective, poly(vinyl alcohol) membrane is best used to treat concentrated acetone feed streams containing only a few percent water. Most of the water is then removed and concentrated in the permeate. Both membranes are more selective than distillation, which rehes on the vapor—hquid equiUbrium to achieve a separation. [Pg.87]

Membrane Sep r tion. The separation of components ofhquid milk products can be accompHshed with semipermeable membranes by either ultrafiltration (qv) or hyperfiltration, also called reverse osmosis (qv) (30). With ultrafiltration (UF) the membrane selectively prevents the passage of large molecules such as protein. In reverse osmosis (RO) different small, low molecular weight molecules are separated. Both procedures require that pressure be maintained and that the energy needed is a cost item. The materials from which the membranes are made are similar for both processes and include cellulose acetate, poly(vinyl chloride), poly(vinyHdene diduoride), nylon, and polyamide (see AFembrane technology). Membranes are commonly used for the concentration of whey and milk for cheesemaking (31). For example, membranes with 100 and 200 p.m are used to obtain a 4 1 reduction of skimmed milk. [Pg.368]

Poly(ethylene terephthalate). PET is a crystalline material and hence difficult to plasticize. Additionally, since PET is used as a high strength film and textile fiber, plasticization is not usually required although esters showing plasticizing properties with PVC may be used in small amounts as processing aids and external lubricants. Plasticizers have also been used to aid the injection mol ding of PET, but only at low concentrations. [Pg.129]

Aqueous poly(ethylene oxide) solutions of higher molecular weight (ca 10 ) become stringy at polymer concentrations less than 1 wt %. At concentrations of 20 wt %, solutions become nontacky elastic gels above this concentration, the solutions appear to be hard, tough, water-plasticized polymers. [Pg.338]

Concentration and Molecular Weight Effects. The viscosity of aqueous solutions of poly(ethylene oxide) depends on the concentration of the polymer solute, the molecular weight, the solution temperature, concentration of dissolved inorganic salts, and the shear rate. Viscosity increases with concentration and this dependence becomes more pronounced with increasing molecular weight. This combined effect is shown in Figure 3, in which solution viscosity is presented as a function of concentration for various molecular weight polymers. [Pg.338]

Tempera.ture Effect. Near the boiling point of water, the solubiUty—temperature relationship undergoes an abmpt inversion. Over a narrow temperature range, solutions become cloudy and the polymer precipitates the polymer caimot dissolve in water above this precipitation temperature. In Figure 4, this limit or cloud point is shown as a function of polymer concentration for poly(ethylene oxide) of 2 x 10 molecular weight. [Pg.339]

Effect of Shear. Concentrated aqueous solutions of poly(ethylene oxide) are pseudoplastic. The degree of pseudoplasticity increases as the molecular weight increases. Therefore, the viscosity of a given aqueous solution is a function of the shear rate used for the measurement. This relationship between viscosity and shear rate for solutions of various molecular weight poly(ethylene oxide) resins is presented in Figure 8. [Pg.341]


See other pages where Poly concentration is mentioned: [Pg.152]    [Pg.2556]    [Pg.2629]    [Pg.1050]    [Pg.16]    [Pg.68]    [Pg.370]    [Pg.640]    [Pg.143]    [Pg.316]    [Pg.282]    [Pg.297]    [Pg.428]    [Pg.496]    [Pg.67]    [Pg.223]    [Pg.287]    [Pg.516]    [Pg.28]    [Pg.546]    [Pg.296]    [Pg.298]    [Pg.332]    [Pg.182]    [Pg.192]    [Pg.515]    [Pg.515]    [Pg.148]    [Pg.149]    [Pg.239]    [Pg.240]    [Pg.303]    [Pg.306]    [Pg.340]   
See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.76 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.388 ]

See also in sourсe #XX -- [ Pg.395 , Pg.396 ]




SEARCH



Crystalline features poly concentration

Modified poly concentration

Poly concentrated solution

Poly concentration dependence

Poly concentration effects

Poly concentration profiles

Poly concentrators

Poly concentrators

Poly critical concentration

Poly double-bond concentration

Poly high carrier concentration

Poly initiator concentration effects

Solvent concentration profile of poly

Solvent concentration profile of poly(methyl

© 2024 chempedia.info