Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly amorphous polymer

AGE-Gontaining Elastomers. ECH—AGE, poly(epichlorohydrin-fo-allyl glycidyl ether) [24969-09-3] (3), ECH—EO—AGE, poly(epichlorohydrin- (9-ethylene oxide-i (9-allyl glycidyl ether) [26587-37-1] (4), ECH—PO—AGE, and PO—AGE are also amorphous polymers. [Pg.553]

As may be expected of an amorphous polymer in the middle range of the solubility parameter table, poly(methyl methacrylate) is soluble in a number of solvents with similar solubility parameters. Some examples were given in the previous section. The polymer is attacked by mineral acids but is resistant to alkalis, water and most aqueous inorganic salt solutions. A number of organic materials although not solvents may cause crazing and cracking, e.g. aliphatic alcohols. [Pg.409]

Whilst the Tg of poly(dimethylsiloxane) rubbers is reported to be as low as -123°C they do become stiff at about -60 to -80°C due to some crystallisation. Copolymerisation of the dimethyl intermediate with a small amount of a dichlorodiphenylsilane or, preferably, phenylmethyldichlorosilane, leads to an irregular structure and hence amorphous polymer which thus remains a rubber down to its Tg. Although this is higher than the Tg of the dimethylsiloxane it is lower than the so that the polymer remains rubbery down to a lower temperature (in some cases down to -100°C). The Tg does, however, increase steadily with the fraction of phenylsiloxane and eventually rises above that of the of the dimethylsilicone rubber. In practice the use of about 10% of phenyldichlorosilane is sufficient to inhibit crystallisation without causing an excess rise in the glass transition temperature. As with the polydimethylsilox-anes, most methylphenyl silicone rubbers also contain a small amount of vinyl groups. [Pg.833]

The glass transition is a phenomenon observed in linear amorphous polymers, such as poly(styrene) or poly(methyl methacrylate). It occurs at a fairly well-defined temperature when the bulk material ceases to be brittle and glassy in character and becomes less rigid and more rubbery. [Pg.46]

Crystalline polymers, e.g., nylon, poly(butylene terphthalate), are not easily impact-modified. The crystalline domains can act as crack initiation sites. Amorphous polymers with high Tgs are more amenable to modification, e.g., PS, PVC, PC, although PC is tough because of H-bonding that occurs between the polymer chains. [Pg.114]

A.O. Pozdnyakov, B.L. Baskin, O.F. Pozdnyakov, Fullerene C60 diffusion in thin layers of amorphous polymers polystyrene and poly(amethylstyrene), Techical Physics Letters, vol. [Pg.112]

An amorphous material sometimes referred to as amorphous poly(ethylene oxide), aPEO, consists of medium but randomly-variable length segments of poly(ethylene oxide) joined by methyleneoxide units. Fig. 5.13 (Wilson, Nicholas, Mobbs, Booth and Giles, 1990). These methyleneoxide units break up the regular helical pattern of poly(ethylene oxide) and in doing so suppress crystallisation. The aPEO host polymer and its salt complexes can crystallise below room temperature, but this is not detrimental to the properties of the polymer-salt complexes at or above room temperature. Similarly, dimethyl siloxy units have been introduced between medium length poly(ethylene oxide) units to produce an amorphous polymer. Fig. 5.14 (Nagoka, Naruse, Shinohara and Watanabe, 1984). [Pg.107]

Examples of crystalline polymers are nylons, cellulose, linear polyesters, and high-density polyethylene. Amorphous polymers are exemplified by poly(methyl methacrylate), polycarbonates, and low-density polyethylene. The student should think about why these structures promote more or less crystallinity in these examples. [Pg.281]

PVA is used in the treatment of textiles and paper. PVA also acts as the starting material for the synthesis of a number of poly(vinyl acetals) with the general structure as given in Equation 6.66. The acetal rings on these random amorphous polymer chains restrict flexibility and increase the heat deflection temperature to a value higher than that of PVAc. [Pg.200]

Amorphous polymers are characterized by the following properties They are transparent and very often soluble in common organic solvents at room temperature. The following amorphous polymers have gained industrial importance as thermoplastic materials polyfvinyl chloride), polystyrene, polyfmethyl methacrylate), ABS-polymers, polycarbonate, cycloolefine copolymers, polysulfone, poly( ether sulfone), polyfether imide). [Pg.24]

The principal polyolefins are low-density polyethylene (ldpe), high-density polyethylene (hope), linear low-density polyethylene (lldpe), polypropylene (PP), polyisobutylene (PIB), poly-1-butene (PB), copolymers of ethylene and propylene (EP), and proprietary copolymers of ethylene and alpha olefins. Since all these polymers are aliphatic hydrocarbons, the amorphous polymers are soluble in aliphatic hydrocarbon solvents with similar solubility parameters. Like other alkanes, they are resistant to attack by most ionic and most polar chemicals their usual reactions are limited to combustion, chemical oxidation, chlorination, nitration, and free-radical reactions. [Pg.133]

Powdered amorphous polymer such as atactic poly(styrene) or poly-(methyl methacrylate)... [Pg.179]

The investigation of the 300 MHz spectrum of poly(3-methyl-l -butene) indicates that the conclusions drawn by previous workers (2—4) concerning the structures of the crystalline and amorphous polymers are essentially correct the crystalline polymer being almost entirely of the 1,3-structure and the amorphous polymer being a mixture of both 1,2- and 1,3-structures. Further, it has indicated that this method is useful for analysis of the composition of the polymer. Quantitative composition determination, however, has not been carried out, since it is felt that the accuracy of the previous estimates utilizing near infrared spectroscopy were satisfactory. [Pg.70]

By definition, thermoplastics have limitations at elevated temperatures. It is in this particular property that fibrous glass can lead to remarkable improvements. However, a sharp division exists for reinforced thermoplastics. The various reinforced thermoplastics can be put in two groups relative to DTUL. These consist of amorphous and crystalline or semicrystalline polymers. The amorphous polymers such as styrene-acrylonitrile, polystyrene, polycarbonate, poly (vinyl chloride), and acrylo-nitrile-butadiene-styrene are generally limited to modest DTUL improvements, usually on the order of 20°F with 20% glass. However, crystalline polymers such as the nylons, linear polyethylene, polypropyl-... [Pg.470]

The approach developed in this paper, combining on the one side experimental techniques (dynamic mechanical analysis, dielectric relaxation, solid-state 1H, 2H and 13C NMR on nuclei at natural abundance or through specific labelling), and on the other side atomistic modelling, allows one to reach quite a detailed description of the motions involved in the solid-state transitions of amorphous polymers. Bisphenol A polycarbonate, poly(methyl methacrylate) and its maleimide and glutarimide copolymers give perfect illustrations of the level of detail that can be achieved. [Pg.211]


See other pages where Poly amorphous polymer is mentioned: [Pg.149]    [Pg.151]    [Pg.261]    [Pg.43]    [Pg.121]    [Pg.185]    [Pg.1215]    [Pg.38]    [Pg.230]    [Pg.168]    [Pg.71]    [Pg.71]    [Pg.266]    [Pg.291]    [Pg.89]    [Pg.110]    [Pg.567]    [Pg.411]    [Pg.156]    [Pg.106]    [Pg.119]    [Pg.197]    [Pg.36]    [Pg.456]    [Pg.143]    [Pg.204]    [Pg.293]    [Pg.348]    [Pg.149]    [Pg.151]    [Pg.241]    [Pg.261]    [Pg.26]    [Pg.676]   
See also in sourсe #XX -- [ Pg.316 ]




SEARCH



Amorphous polymers

Poly polymers

© 2024 chempedia.info