Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly adsorption physics

The autohesion effect is especially good, therefore, when weak crystallization occurs on applying pressure or during annealing, as, for example, with natural rubber or with l,5-trans-poly(pentenamers) (physical cross-linking). On the other hand, if the crystallization is too strong, the deformability of the adhesive is too small (see Section 7.4.2). If adherent and adhesive are chemically different, then in the EfE type this leads to interdiffusion and thence to heteroadhesion. Of course, marked interdiffusion is only possible when the different macromolecules are compatible with one another, and the strength of the autoadhesion or heteroadhesion depends on both diffusion and adsorption. [Pg.504]

It has been outlined by several authors that the single macromolecule may be irreversibly bound because of the large number of weakly interacting segments. The first papers on the construction of polymer-coated silica adsorbents involved the physical adsorption of water-soluble polymers. Polyethylene oxides [28, 29] and poly-/V-vinylpyrrolidone [30] are examples of the stationary phases of this type. [Pg.142]

Covalent attachment of enzymes to surfaces is often intuitively perceived as being more reliable than direct adsorption, but multisite physical interactions can in fact yield a comparably strong and stable union, as demonstrated by several biological examples. The biotin/streptavidin interaction requires a force of about 0.3 nN to be severed [Lee et al., 2007], and protein/protein interactions typically require 0.1 nN to break, but values over 1 nN have also been reported [Weisel et al., 2003]. These forces are comparable to those required to mpture weaker chemical bonds such as the gold-thiolate bond (1 nN for an alkanethiol, and even only 0.3 nN for a 1,3-aUcanedithiol [Langry et al., 2005]) and the poly(His)-Ni(NTA) bond (0.24 nN, [Levy and Maaloum, 2005]). [Pg.602]

A flow injection optical fibre biosensor for choline was also developed55. Choline oxidase (ChOX) was immobilized by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) after adsorption on weak anion-exchanger beads (DEAE-Sepharose). In this way, the sensing layer was directly created at the surface of the working glassy carbon electrode. The optimization of the reaction conditions and of the physicochemical parameters influencing the FIA biosensor response allows the measurement of choline concentration with a detection limit of 10 pmol. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with a variation coefficient of 4.5%. [Pg.171]

A variety of procedures were utilized to analyze this reaction mixture and to characterize a,10-diaminopolystyrene. Thin layer chromatographic analysis using toluene as eluent exhibited three spots with Rf values of 0.85, 0.09, and 0.05 which corresponded to polystyrene, poly(styryl)amine and a,w-diaminopolystyrene (see Figure 1). Pure samples of each of these products were obtained by silica gel column Chromatography of the crude reaction mixture initially using toluene as eluent [for polystyrene and poly(styryl)amine] followed by a methanol/toluene mixture (5/100 v/v) for the diamine. Size-exclusion chromatography could not be used to characterize the diamine since no peak was observed for this material, apparently because of the complication of physical adsorption to the column packing material. Therefore, the dibenzoyl derivative (eq. 5) was prepared and used for most of the analytical characterizations. [Pg.143]

Surfaces grafted with poly(ethylene glycol) (PEO) have been most extensively studied. A detailed review of this topic was recently given in [139]. To prepare PEO surfaces, various strategies were apphed physical adsorption of... [Pg.39]

Since ordered structural orientation is believed to be a prerequisite for exhibiting alternation in physical properties in monolayer coverage, I have interpreted the alternation exhibited in the C data for the liquids that comprise Z(CH2)nH series to mean that such moleclules are fixed to the monomer unit of poly(styrene) segments in the liquid-saturated gel-state via the Z substituent, and that these adsorbed molecules are distributed around the adsorption sites (i.e, the monomer units) in a well-defined orientation with respect to each site, such that the established orientation relative to that monomer unit is maintained despite the freedom of rotation and serpentine movement of the polymer segments between crosslink junctions in the liquid-saturated gel domain. [Pg.51]

The poly (HEM A) sheets were prepared by B. Ratner using a special technique he developed. The HEMA solutions were poured between glass plates, and polymerization was chemically initiated. The chemical and physical properties of this material are very similar to those of radiation-grafted poly (HEMA) insofar as protein adsorption is concerned. Heterogeneous or homogeneous poly (HEMA) films were made by polymerization in solvents in which the poly (HEMA) is insoluble or soluble, respectively the result is a white opaque material in the first case and a transparent material in the second case. The resulting films were washed free of excess monomer and then soaked in the buffer to be used in the fibrinogen adsorption experiment for 10 days at 37 °C prior to the actual experiment. [Pg.240]

Sharma et al. reported application of poly(2-fluoroaniline) films which was electrochemically deposited on ITO coated glass plates to produce glucose sensors. GOx was immobilized on the polymer films by physical adsorption methods. Sensors constructed by this method showed efficient electron transfer between the adsorbed GOx and the electrode surface and were found to be stable up to 32 days [128]. [Pg.362]

Kinoshita has also shown that ORR data for supported catalysts in hot, concentrated H3PO4 (180 °C, 97-98% acid) reported in three different studies were also fit by this model. Since the physical basis for the crystallite size effect in sulfuric acid is anion adsorption, it would be a considerable reach to suggest that the same physical basis applies to this size effect, i.e., structure-sensitive anion adsorption. There are, nonetheless, indications that this is the case. Anion adsorption in dilute phosphoric [43] has a very similar structure sensitivity as sulfate adsorption, i.e., strongest adsorption on the (111) face, and on poly-Pt anion adsorption and/or neutral molecule adsorption in dilute phosphoric has a strongly inhibiting effect on the kinetics of the ORR [43]. Sattler and Ross [16] report a similar crystallite size dependence of the ORR on supported Pt in dilute phosphoric acid at ambient temperature as that found in hot, concentrated acid with the same catalysts. But it is unclear whether similar adsorption chemistry would exist in the extreme conditions of hot, concentrated phosphoric acid. [Pg.347]

The adsorption of polymers, poly(vinyl pyridine) or poly(acrylonitrile) either to coordinate metal atoms or to adsorb biopolymers has been used to prepare chemically modified electrodes for immobihzation of enzymes either by physical or by chemical adsorption (carrier binding), cross-linking, and entrapping at lattice sites or in microcapsules [43]. A wide application of these types of electrodes has been made for electrochemical reactions of biological interest [44]. [Pg.493]

Surfactants have also been used to overcome the solubility limitation of synthetic polymers in CO2 (most common synthetic polymers would be considered to be C02-phobic). For example, surfactants have been used to aid in the dispersion polymerization of poly(methylmethacrylate) (PMMA) in CO2 (58-60). The surfactants used in the polymerizations of PMMA are more accurately referred to as stabilizers. The C02-phobic region acts as anchor to the growing polymer, either by physical adsorption or by chemical grafting. The C02-philic region sterically stabilizes the growing polymer particles, preventing flocculation and precipitation. When a biopolymer is not soluble in CO2, specific surfactants may be designed to aid in the solubilization of the polymer into CO2. [Pg.17]

McCarthy and coworkers126 229 reported a template-guided synthesis of water-soluble chiral PAn nanocomposites. The nanoparticles were prepared by the physical adsorption of aniline monomer onto a templating poly(acrylic acid) in the presence of (+)- or (-)-CSA, followed by chemical oxidation. Using this approach, optically active nanocomposites of approximately 100 nm diameter were formed. Earlier work by Sun and Yang230 using polyelectrolytes produced similar nonchiral dispersions in which the PAn chain is interwound with a water-soluble polymer by electrostatic forces.231 Similar work by Samuelson and coworkers utilized DNA as a chiral template for PAn.232... [Pg.169]


See other pages where Poly adsorption physics is mentioned: [Pg.790]    [Pg.238]    [Pg.183]    [Pg.122]    [Pg.200]    [Pg.389]    [Pg.44]    [Pg.360]    [Pg.405]    [Pg.266]    [Pg.1]    [Pg.645]    [Pg.151]    [Pg.11]    [Pg.69]    [Pg.142]    [Pg.266]    [Pg.629]    [Pg.245]    [Pg.136]    [Pg.199]    [Pg.1338]    [Pg.10]    [Pg.104]    [Pg.297]    [Pg.4058]    [Pg.1290]    [Pg.62]    [Pg.234]    [Pg.480]    [Pg.125]    [Pg.218]    [Pg.187]    [Pg.141]    [Pg.137]    [Pg.38]    [Pg.104]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



Adsorption poly

Physical adsorption

Poly , physical

© 2024 chempedia.info