Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly acidic hydrolysis

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

M HCl at room temperature. Little, if any, use of these groups has been made by the general synthetic community, but the wide range of selectivities observed in their acidic hydrolysis should render them useful for the selective protection of poly functional molecules. [Pg.35]

Some tailor-made homopolymers can serve as starting points for chemical modifications to yield new species. Poly(hydroxyethyl methacrylate) and poly(glyceryl methacrylate) 16), already mentioned, are obtained upon hydrolysis of the OH-protecting groups that allow the anionic polymerization to proceed. Another example is the acid hydrolysis of poly(t-butyl methacrylate), a reaction which proceeds easily to completion, yielding poly(methacrylic acid) of known degree of polymerization and narrow molecular weight distribution 44 45). [Pg.154]

A variety of reagents could be used to carry out such a conversion (18,19). We chose to react the alkoxide ion with succinic anhydride (SA), because the alkoxide ion could be converted quantitatively to the carboxylate ion when excess of SA is used, and also because no side reactions are reported (19). The carboxylate anion, 3, thus formed was used to polymerize PVL giving the masked poly(oxyethylene)-b-po y(pivalolactone) co-polymeric salt, 4. The salt, 4, was converted to the teiechelomer, 5, by acid hydrolysis.. ... [Pg.157]

Figure 4. Carbonyl region of polytt-butyl styrene)-b-poly(methacrylic acid) after 90 min. of acid hydrolysis. Figure 4. Carbonyl region of polytt-butyl styrene)-b-poly(methacrylic acid) after 90 min. of acid hydrolysis.
Although the potassium superoxide route can be universally applied to various alkyl methacrylates, it is experimentally more difficult than simple acid hydrolysis. In addition, limited yields do not permit well-defined hydrophobic-hydrophilic blocks. On the other hand, acid catalyzed hydrolysis is limited to only a few esters such as TBMA, but yields of carboxylate are quantitative. Hydrolysis attempts of poly(methyl methacrylate) (PMMA) and poly(isopropyl methacrylate) (PIPMA) do not yield an observable amount of conversion to the carboxylic acid under the established conditions for poly(t-butyl methacrylate) (PTBMA). This allows for selective hydrolysis of all-acrylic block copolymers. [Pg.270]

Brown and White employed this approach to prepare block copolymers of styrene and mcthacrylic acid (6). They were able to hydrolyze poly(styrene-b-methyl methacrylate) (S-b-MM) with p-toluenesulfonic acid (TsOH). Allen, et al., have recently reported acidic hydrolysis of poly(styrene-b-t-butyl methacrylate) (S-b-tBM) (7-10). These same workers have also prepared potassium methacrylate blocks directly by treating blocks of alkyl methacrylates with potassium superoxide (7-10). [Pg.277]

Poly(A) synthesis also occurred in the second system, but the product remained within the vesicles. Walde also determined the increase of the vesicle concentration, which corresponds to that expected for an autocatalytic process. In this experiment, the enzyme PNPase is first captured by the vesicle envelope, and in the second step, ADP and oleic anhydride are added the anhydride is hydrolysed to the acid. ADP passes through the vesicle double layer and is polymerized in the interior of the vesicle by PNPase to give poly(A). Hydrolysis of the anhydride causes a constant additional delivery of vesicle-forming material, so that the amount of vesicle present increases during the poly(A) synthesis. These experiments demonstrated a model for a minimal cell. Autocatalytically synthesised giant vesicles could be prepared under similar conditions and observed under a microscope (Wik et al., 1995). [Pg.267]

We may return now to the polysaccharides present in the peanut for a brief consideration of the relationship of the other components present in the pectic materials to the araban constituent. All the evidence indicates that the pectic acid portion of the peanut is identical with normal pectic acid and, as was indicated in the previous section, this material, which is very stable to acid hydrolysis and possesses a high positive rotation contains a main chain which is built up of D-galac-turonic acid residues of the pyranose type. If, therefore, the araban associated with the pectic acid had been derived directly from the pectic acid by decarboxylation without intermediate hydrolysis of the poly-galacturonide, the sugar residues in the araban should also be in the pyranose form. The experimental evidence shows clearly, however, that the arabinose residues in araban are furanose in type and it follows that any hypothesis concerning the direct conversion of pectic acid into the araban by decarboxylation is untenable. [Pg.264]

Subjecting monosaccharides to conditions of acid hydrolysis is only of importance in measuring the expected hydrolysis losses during hydrolysis of oligo- and poly-saccharides. Hydrolysis losses may be predicted, based on either the absolute or the relative decomposition of monosaccharides. Absolute decompositions are based on decomposition of monosaccharides. Relative decompositions are based on studies wherein several methods of hydrolysis were applied to the same samples for various lengths of time in this Section, these are classified under the type of acid that causes the least decomposition (that is the largest yield of monosaccharides liberated), because this acid is usually the one of principal concern in the particular study. [Pg.259]

Acyl chloride-functionalized SWCNTs are also susceptible to reactions with other nucleophiles, e.g. alcohols. Haddorfs group reported the preparation of soluble ester-functionalized carbon nanotubes SWCNT-COO(CH2)17CH3 (Fig. 1.6a) obtained by esterification with octadecanol [134]. The syntheses of soluble polymer-bound and dendritic ester-functionalized SWCNTs have been reported by Riggs et al. by attaching poly(vinyl acetate-co-vinyl alcohol) (Fig. 1.6b) [135] and hydrophilic and lipophilic dendron-type benzyl alcohols [119], respectively, to SWCNT-COC1 (Fig. 1.6c). These functional groups could be removed under basic and acidic hydrolysis conditions and thus additional evidence for the nature of the attachment was provided [119, 136]. [Pg.15]

Conditions selected so that the copolymer contained about the same amount of cellulose, 77-82% AN = acrylonitrile DMF = N,N-dimethylformamide. b Initial molecular weight of cellulose 7.1 X 105 for ionizing radiation molecular weight of cellulose was determined at dosage indicated no determination was made on possible oxidative depolymerization of cellulose by chemical redox systems. c Based on poly (acrylonitrile) recovered from acid hydrolysis of copolymer and on intrinsic viscosity method. [Pg.602]

Jeong, J.H., Song, S.H., Lim, D.W., Lee, H., and Park, T.G. (2001) DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). Journal of Controlled Release 73 391-399. [Pg.28]

Pofy-l-vinyluradl (poly-VUr, 10) was also obtained by a free-radical polymerization6). In this case, it should be noted that the formation of substituted dihydrouradl rings occurred via a cydopolymerization mechanism11). y-Ray induced solid-state polymerization of the monomer (9) in high concentration and at low temperature excluded cydopolymerization completely12). Poly-VUr was also prepared by a free-radical polymerization of 2-ethoxy-4-l-vinyl-pyrimidone (ii)8) or 4-ethoxy-l-vinyl-2-pyrimidone (13)iy> followed by acid hydrolysis of the resulting polymers (12) or (14) (Scheme 2). [Pg.3]

Example 12.1 Poly (methyl methacrylate) is used in the manufacture of resins and plastics. The traditional synthesis of the monomer, methyl methacrylate, uses acetone and hydrogen cyanide as reagents, followed by the acidic hydrolysis and esterification of the nitrile group, as shown below ... [Pg.307]


See other pages where Poly acidic hydrolysis is mentioned: [Pg.262]    [Pg.298]    [Pg.49]    [Pg.344]    [Pg.51]    [Pg.301]    [Pg.27]    [Pg.47]    [Pg.252]    [Pg.12]    [Pg.327]    [Pg.98]    [Pg.476]    [Pg.49]    [Pg.176]    [Pg.445]    [Pg.197]    [Pg.367]    [Pg.989]    [Pg.388]    [Pg.396]    [Pg.117]    [Pg.15]    [Pg.295]    [Pg.330]    [Pg.536]    [Pg.547]    [Pg.343]    [Pg.204]    [Pg.281]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Poly acid

Poly hydrolysis

© 2024 chempedia.info