Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plotting define plot

Various partitions, resulted from the different combinations of clustering parameters. The estimation of the number of classes and the selection of optimum clustering is based on separability criteria such as the one defined by the ratio of the minimum between clusters distance to the maximum of the average within-class distances. In that case the higher the criterion value the more separable the clustering. By plotting the criterion value vs. the number of classes and/or the algorithm parameters, the partitions which maximise the criterion value is identified and the number of classes is estimated. [Pg.40]

Off-line analysis of stored data review of the stored data, organize data in different presentation windows, plot AE and plant parameters data so as to enable comparison and coirelation with the possibility to present data (histogram of AE events vs position, plant parameters and/or AE parameters vs time) conditioned in terms of time interval (initial time, final time) and/or position interval (defined portion of the component = initial coordinate, final coordinate) and/or plant parameters intervals (one or more plant parameters = initial value, final value). [Pg.70]

A two-dimensional slice may be taken either parallel to one of the principal co-ordinate planes (X-Y, X-Z and Y-Z) selected from a menu, or in any arbitrary orientation defined on screen by the user. Once a slice through the data has been taken, and displayed on the screen, a number of tools are available to assist the operator with making measurements of indications. These tools allow measurement of distance between two points, calculation of 6dB or maximum amplitude length of a flaw, plotting of a 6dB contour, and textual aimotation of the view. Figure 11 shows 6dB sizing and annotation applied to a lack of fusion example. [Pg.772]

It is important to note that the experimentally defined or apparent adsorption no AN 2/, while it gives F, does not give the amount of component 2 in the adsorbed layer Only in dilute solution where N 2 0 and = 1 is this true. The adsorption isotherm, F plotted against N2, is thus a composite isotherm or, as it is sometimes called, the isotherm of composition change. [Pg.407]

Sing (see Ref. 207 and earlier papers) developed a modification of the de Boer r-plot idea. The latter rests on the observation of a characteristic isotherm (Section XVII-9), that is, on the conclusion that the adsorption isotherm is independent of the adsorbent in the multilayer region. Sing recognized that there were differences for different adsorbents, and used an appropriate standard isotherm for each system, the standard isotherm being for a nonporous adsorbent of composition similar to that of the porous one being studied. He then defined a quantity = n/nx)s where nx is the amount adsorbed by the nonporous reference material at the selected P/P. The values are used to correct pore radii for multilayer adsorption in much the same manner as with de Boer. Lecloux and Pirard [208] have discussed further the use of standard isotherms. [Pg.667]

In the reaction kinetics context, the tenn nonlinearity refers to the dependence of the (overall) reaction rate on the concentrations of the reacting species. Quite generally, the rate of a (simple or complex) reaction can be defined in temis of the rate of change of concentration of a reactant or product species. The variation of this rate with the extent of reaction then gives a rate-extent plot. Examples are shown in figure A3.14.1. In... [Pg.1093]

One of the most important fiinctions in the application of light scattering is the ability to estimate the object dimensions. As we have discussed earlier for dilute solutions containing large molecules, equation (B 1.9.38) can be used to calculate tire radius of gyration , R, which is defined as the mean square distance from the centre of gravity [12]. The combined use of equation (B 1.9.3 8) equation (B 1.9.39) and equation (B 1.9.40) (tlie Zimm plot) will yield infonnation on R, A2 and molecular weight. [Pg.1396]

As was said in the introduction (Section 2.1), chemical structures are the universal and the most natural language of chemists, but not for computers. Computers woi k with bits packed into words or bytes, and they perceive neither atoms noi bonds. On the other hand, human beings do not cope with bits very well. Instead of thinking in terms of 0 and 1, chemists try to build models of the world of molecules. The models ai e conceptually quite simple 2D plots of molecular sti uctures or projections of 3D structures onto a plane. The problem is how to transfer these models to computers and how to make computers understand them. This communication must somehow be handled by widely understood input and output processes. The chemists way of thinking about structures must be translated into computers internal, machine representation through one or more intermediate steps or representations (sec figure 2-23, The input/output processes defined... [Pg.42]

Example Yon can monitor improper torsion angles to determine wh ich side of a substrate m olecn le faces the active site of a protein. Select three atoms on the substrate molecule and a fourth in the active site. These atom s define an improper torsion angle. Save th is selection as a named selection. Then observe a plot of this improper torsion angle (in the Molecular Dynam ics Results dialog... [Pg.87]

The sensitivity of the balance. The sensitivity of the balance may conveniently be defined as the deflection of the balance pointer over the scale caused by an excess of i mg. on one of the pans. This factor differs according to the actual load on the pans, and it is usual to plot the sensitivity at a series of loads over the range within which the balance is to be used the sensitivity at any particular load may then be determined at once by reference to the curve. [Pg.465]

This discussion will be limited to functions of one variable that can be plotted in 2-space over the interval considered and that constitute the upper boundar y of a well-defined area. The functions selected for illustration are simple and well-behaved, they are smooth, single valued, and have no discontinuities. When discontinuities or singularities do occur (for example the cusp point of the Is hydrogen orbital at the nucleus), we shall integrate up to the singularity but not include it. [Pg.9]

Herein is the rate constant for a dienophile with substituent x ko is the corresponding rate constant for unsubstituted 2,4c Ox is the substituent constant for substituent x and p is the reaction constant, defined as the slope of the plot of log (k / ko) versus Ox. The parameter p is a measure of the sensitivity of the reactions towards introduction of substituents. Figure 2.3 and Table 2.4 show the results of correlating the kinetic data for the reaction of 2.4a-e with 2.5 with a. ... [Pg.55]

The electronic structure of an infinite crystal is defined by a band structure plot, which gives the energies of electron orbitals for each point in /c-space, called the Brillouin zone. This corresponds to the result of an angle-resolved photo electron spectroscopy experiment. [Pg.266]

A plot against Hammett s cr-constants of the logarithms of the rate constants for the solvolysis of a series of Mz-substituted dimethylphenylcarbinyl chlorides, in which compounds direct resonance interaction with the substituent is not possible, yielded a reasonably straight line and gave a value for the reaction constant (p) of — 4 54. Using this value of the reaction constant, and with the data for the rates of solvolysis, a new set of substituent parameters (cr+) was defined. The procedure described above for the definition of cr+, was adopted for... [Pg.138]

Striking confirmation of the conclusion that the BET area derived from a Type IV isotherm is indeed equal to the specific surface is afforded by a recent study of a mesoporous silica, Gasil I, undertaken by Havard and Wilson. This material, having been extensively characterized, had already been adopted as a standard adsorbent for surface area determination (cf. Section 2.12). The nitrogen isotherm was of Type IV with a well defined hysteresis loop, which closed at a point below saturation (cf. F, in Fig. 3.1). The BET area calculated from it was 290 5 0 9 m g , in excellent agreement with the value 291 m g obtained from the slope of the initial region of the plot (based on silica TK800 as reference cf. p. 93). [Pg.168]

A plot of equation 13.18, shown in figure 13.10, is instructive for defining conditions under which the rate of an enzymatic reaction can be used for the quantitative analysis of enzymes and substrates. Eor high substrate concentrations, where [S] Kjq, equation 13.18 simplifies to... [Pg.637]

Figure 2.5 shows some actual experimental data for versus 7, measured on a sample of polyethylene at 126°C. Note that the data are plotted on log-log coordinates. In spite of the different coordinates. Fig. 2.5 is clearly an example of pseudoplastic behavior as defined in Fig. 2.2. In this and the next several sections, we discuss shear-dependent viscosity. In this section the approach is strictly empirical, and its main application is in correcting viscosities measured... Figure 2.5 shows some actual experimental data for versus 7, measured on a sample of polyethylene at 126°C. Note that the data are plotted on log-log coordinates. In spite of the different coordinates. Fig. 2.5 is clearly an example of pseudoplastic behavior as defined in Fig. 2.2. In this and the next several sections, we discuss shear-dependent viscosity. In this section the approach is strictly empirical, and its main application is in correcting viscosities measured...
We define Fj to be the mole fraction of component 1 in the vapor phase and fi to be its mole fraction in the liquid solution. Here pj and p2 are the vapor pressures of components 1 and 2 in equihbrium with an ideal solution and Pi° and p2° are the vapor pressures of the two pure liquids. By Dalton s law, Plot Pi P2 Pi/Ptot these are ideal gases and p is propor-... [Pg.430]

Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1. Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1.
Effective temperature (ET ) is a single number representing those combinations of temperature and humidity which are equivalent in terms of comfort. It is defined as the dry-bulb temperature of the environment at 50% relative humidity. Standard effective temperature loci for normally clothed, sedentary persons are plotted on Eigure 3. The sensation of comfort depends in part upon the wetness of one s skin. Thus, as a person becomes more active the effective temperature lines become more hori2ontal and the influence of relative humidity is more pronounced. [Pg.358]

Fig. 2. The plot of total reduced iron, Fe, and oxidized iron, Fe, normalized to Si abundance shows how the chondrite classes fall into groups distinguished by oxidation state and total Fe Si ratio. The soHd diagonal lines delineate compositions having constant total Fe Si ratios of 0.6 and 0.8. The fractionation of total Fe Si is likely the result of the relative efficiencies of accumulation of metal and siUcate materials into the meteorite parent bodies. The variation in oxidation state is the result of conditions in the solar nebula when the soHds last reacted with gas. Terms are defined in Table 1 (3). Fig. 2. The plot of total reduced iron, Fe, and oxidized iron, Fe, normalized to Si abundance shows how the chondrite classes fall into groups distinguished by oxidation state and total Fe Si ratio. The soHd diagonal lines delineate compositions having constant total Fe Si ratios of 0.6 and 0.8. The fractionation of total Fe Si is likely the result of the relative efficiencies of accumulation of metal and siUcate materials into the meteorite parent bodies. The variation in oxidation state is the result of conditions in the solar nebula when the soHds last reacted with gas. Terms are defined in Table 1 (3).
Conventional filtration theory has been challenged a two-phase theory has been appHed to filtration and used to explain the deviations from paraboHc behavior in the initial stages of the filtration process (10). This new theory incorporates the medium as an integral part of the process and shows that the interaction of the cake particles with the medium controls filterabiHty. It defines a cake-septum permeabiHty which then appears in the slope of the conventional plots instead of the cake resistance. This theory, which merely represents a new way of interpreting test data rather than a new method of siting or scaling filters, is not yet accepted by the engineering community. [Pg.392]


See other pages where Plotting define plot is mentioned: [Pg.47]    [Pg.107]    [Pg.213]    [Pg.201]    [Pg.104]    [Pg.632]    [Pg.1075]    [Pg.1122]    [Pg.1870]    [Pg.2091]    [Pg.339]    [Pg.51]    [Pg.148]    [Pg.244]    [Pg.163]    [Pg.95]    [Pg.51]    [Pg.148]    [Pg.56]    [Pg.75]    [Pg.47]    [Pg.373]    [Pg.650]    [Pg.78]    [Pg.39]    [Pg.230]    [Pg.63]    [Pg.72]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Define Plot

© 2024 chempedia.info