Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbent nonporous

The above methods for obtaining D, as well as other ones, are reviewed in Refs. 3-12, and Refs. 7-9 give tables of D values for various adsorbents. For example, D is close to 3 for the highly porous silica gels and close to 2 for nonporous fumed silica and for graphitized carbon black coconut charcoal and alumina were found to have D values of 2.67 and 2.79, respectively [7]. [Pg.575]

The preceding material has been couched in terms of site energy distributions—the implication being that an adsorbent may have chemically different kinds of sites. This is not necessarily the case—if micropores are present (see Section XVII-16) adsorption in such may show an increased Q because the adsorbate experiences interaction with surrounding walls of adsorbent. To a lesser extent this can also be true for a nonporous but very rough surface. [Pg.660]

Sing (see Ref. 207 and earlier papers) developed a modification of the de Boer r-plot idea. The latter rests on the observation of a characteristic isotherm (Section XVII-9), that is, on the conclusion that the adsorption isotherm is independent of the adsorbent in the multilayer region. Sing recognized that there were differences for different adsorbents, and used an appropriate standard isotherm for each system, the standard isotherm being for a nonporous adsorbent of composition similar to that of the porous one being studied. He then defined a quantity = n/nx)s where nx is the amount adsorbed by the nonporous reference material at the selected P/P. The values are used to correct pore radii for multilayer adsorption in much the same manner as with de Boer. Lecloux and Pirard [208] have discussed further the use of standard isotherms. [Pg.667]

The nitrogen adsorption isotherm is determined for a finely divided, nonporous solid. It is found that at = 0.5, P/P is 0.05 at 77 K, gnd P/F is 0.2 at 90 K. Calculate the isosteric heat of adsorption, and AS and AC for adsorption at 77 K. Write the statement of the process to which your calculated quantities correspond. Explain whether the state of the adsorbed N2 appears to be more nearly gaslike or liquidlike. The normal boiling point of N2 is 77 K, and its heat of vaporization is 1.35 kcal/mol. [Pg.675]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

Fig. 2.27 Effect of mesoporosily on the adsorption isotherm and the t- (or a,-) plot, (a) (A) is the isotherm on a nonporous sample of the adsorbent (B) is the isotherm on the same solid when mesopores have been introduced into it, (i) being the adsorption, and (ii) the desorption branch. (b) I- (or a,-) plots corresponding to the isotherms in (a) (Schematic only.)... Fig. 2.27 Effect of mesoporosily on the adsorption isotherm and the t- (or a,-) plot, (a) (A) is the isotherm on a nonporous sample of the adsorbent (B) is the isotherm on the same solid when mesopores have been introduced into it, (i) being the adsorption, and (ii) the desorption branch. (b) I- (or a,-) plots corresponding to the isotherms in (a) (Schematic only.)...
The effect of these factors on the adsorption isotherm may be elucidated by reference to specific examples. In the case of the isotherm of Fig. 5.17(a), the nonporous silica had not been re-heated after preparation, but had been exposed to near-saturated water vapour to ensure complete hydroxylation. The isotherm is of Type II and is completely reversible. On the sample outgassed at 1000°C (Fig. 5.17(h)) the isotherm is quite different the adsorption branch is very close to Type III, and there is extrensive hysteresis extending over the whole isotherm, with considerable retention of adsorbate on outgassing at 25°C at the end of the run. [Pg.272]

Liquid-phase adsorption methods are widely used for quaUty control and specification purposes. The adsorption of iodine from potassium iodide solution is the standard ASTM method D1510-83 (2). The surface area is expressed as the iodine number whose units are milligrams of iodine adsorbed per gram of carbon. It is quite fortuitous that the values of iodine numbers turn out to be about the same as the values for surface areas in square meters per gram by nitrogen adsorption for nonporous carbon blacks. [Pg.548]

There are two main varieties of carbon (i) crystalline (e.g., graphite and diamond), and (ii) amorphous. The amorphous variety consists of carbon blacks and charcoals. Carbon blacks are nonporous fine particles of carbon produced by the combustion of gaseous or liquid carbonaceous material (e.g., natural gas, acetylene, oils, resins, tar, etc.) in a limited supply of air. Charcoals are produced by the carbonization of solid carbonaceous material such as coal, wood, nut shells, sugar, synthetic resins, etc. at about 600 °C in the absence of air. The products thus formed have a low porosity, but when activated by air, chlorine, or steam, a highly porous material is produced this porous product is called activated charcoal. Chemically speaking carbon blacks and charcoals are similar, the difference being only in physical aspects. Carbon blacks find use in the rubber industry and in ink manufacture. An important use of charcoals is as adsorbents. [Pg.508]

Nonplant cost, 9 527 Nonpoint contamination source, 13 310 Nonpolar adsorbents, 1 674 for gas adsorption, 1 632 Nonpolar solvents, VDC polymer degradation in, 25 717-718 Nonporous dense membranes, 15 799 Nonporous silicone tubing, flow through, 15 722, 723... [Pg.633]

Novel general expressions were developed for the description of the behaviour of the height equivalent of a theoretical plate in various chromatographic columns such as unpacked (open capillary), packed with spherical nonporous particles and packed with spherical porous adsorbent particles. Particles may have unimodal or bimodal pore size distribution. The expression describing the mass balance in open capillaries is... [Pg.22]

In the case of chromatographic columns packed with spherical nonporous adsorbent particles the differential mass transfer balance can be described by... [Pg.23]

Structure EANPS = electrostatic agglomerated nonporous substrate, EAWPS = electrostatic agglomerated wide-pore substrate, PGPS = polymer grafted porous substrate, SMPSS = silane modified porous silica substrate, CMS = chemically modified substrate, APCS = adsorbed polymer coated substrate. [Pg.225]

The abrupt rise in the middle (C) is caused by starting bulk condensation of the adsorbing gas in small pores. On increasing the pressure, bulk condensation occurs in even larger pores, and if all pores are filled, finally the isotherm becomes horizontal again (D). Adsorption and desorption branches retrace each other only for nonporous materials or special cases with pores of certain conical geometry. [Pg.18]

The majority of physisorption isotherms (Fig. 1.14 Type I-VI) and hysteresis loops (Fig. 1.14 H1-H4) are classified by lUPAC [21]. Reversible Type 1 isotherms are given by microporous (see below) solids having relatively small external surface areas (e.g. activated carbon or zeolites). The sharp and steep initial rise is associated with capillary condensation in micropores which follow a different mechanism compared with mesopores. Reversible Type II isotherms are typical for non-porous or macroporous (see below) materials and represent unrestricted monolayer-multilayer adsorption. Point B indicates the stage at which multilayer adsorption starts and lies at the beginning of the almost linear middle section. Reversible Type III isotherms are not very common. They have an indistinct point B, since the adsorbent-adsorbate interactions are weak. An example for such a system is nitrogen on polyethylene. Type IV isotherms are very common and show characteristic hysteresis loops which arise from different adsorption and desorption mechanisms in mesopores (see below). Type V and Type VI isotherms are uncommon, and their interpretation is difficult. A Type VI isotherm can arise with stepwise multilayer adsorption on a uniform nonporous surface. [Pg.19]

Fmpirical methods can be applied in order to determine the validity of the BFT surface area. The derived standard isotherms can be obtained by normalization of the y-axis (volume adsorbed) of adsorption isotherms. It is strongly recommended that data should always be derived from standard isotherms related to a nonpor-ous sample of the same type of material. Various methods have been established like the as-method where the quantity of gas adsorbed V], is related to the value at a relative pressure of 0.4. In the t-plot, the vertical axis is normalized in relation to the average thickness of the adsorbed layer. The shape of the constructed reduced isotherms reveal the presence or absence of micropores and allows the determination of their volume [79, 80]. [Pg.21]

Type II isotherms are most frequently encountered when adsorption occurs on nonporous powders or on powders with pore diameters larger than micropores. The inflection point or knee of the isotherm usually occurs near the completion of the first adsorbed monolayer and with increasing relative pressure, second and higher layers are completed until... [Pg.11]

On nonporous surfaces it has been shown that when W /W is plotted versus P/Po the data all approximately fit a common type II curve above a relative pressure of 0.3. This implies that when WJW = 3, for example, the adsorbed layer thickness t will be 10.62 A regardless of the adsorbent. The common curve is described closely by the Halsey equation which for nitrogen can be written as... [Pg.63]


See other pages where Adsorbent nonporous is mentioned: [Pg.633]    [Pg.667]    [Pg.82]    [Pg.99]    [Pg.204]    [Pg.207]    [Pg.261]    [Pg.284]    [Pg.491]    [Pg.548]    [Pg.1513]    [Pg.50]    [Pg.524]    [Pg.163]    [Pg.68]    [Pg.9]    [Pg.22]    [Pg.302]    [Pg.118]    [Pg.129]    [Pg.252]    [Pg.23]    [Pg.274]    [Pg.276]    [Pg.222]    [Pg.99]    [Pg.465]    [Pg.486]    [Pg.359]    [Pg.717]    [Pg.48]   
See also in sourсe #XX -- [ Pg.108 , Pg.118 ]




SEARCH



© 2024 chempedia.info