Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastics physical properties

In this chapter piezoelectric crystals and polymers ferroelectric and ferromagnetic solids resistance of metals shock-induced electrical polarization electrochemistry elastic-plastic physical properties. [Pg.97]

Properties Fire safety continues to be a major performance requirement. Creep and heat distortion are other important properties to be considered. A major deterrent for the architect and builder is lack of common knowledge about plastics physical properties. [Pg.245]

Chemicals and Plastics Physical Properties, Union Carbide Corp. (product bulletin), (1968). Evans, L. R. Lin, J. S. J. Chem Eng. Data 13 (1968) 14. [Pg.391]

Chemicals and Plastics Physical Properties, Union Carbide Corp. (product bulletin),... [Pg.498]

Recycling code Type of plastic Physical properties Examples Uses for recycled products... [Pg.720]

Markets for plastics Commercial production of plastics Physical properties of plastics Fabrication of plastics Applications... [Pg.435]

Keywords Plastics, physical properties, impact and flow behavior. [Pg.5]

Vapor pressure is the plasticizer physical property that determines volatility. Vapor pressures (Pascals at 25°C) from the chemical literature [2,3] are shown below. [Pg.158]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Triethylene glycol dinitrate (TEGDN) is an explosive plasticizer of low sensitivity that has been used in some nitroceUulose-base propellant compositions, often in combination with metriol trinitrate. Butanetriol trinitrate has been used occasionally as an explosive plasticizer coolant in propellants. Its physical properties are Hsted in Table 7. [Pg.13]

Trimethylolethane trinitrate (metriol trinitrate) is not satisfactory as a plasticizer for nitrocellulose, and must be used with other plasticizers such as metriol triacetate. Mixtures with nitroglycerin tend to improve the mechanical properties of double-base cast propellants at high and low temperatures. Metriol trinitrate has also been used in combination with triethylene glycol dinitrate as a plasticizer for nitrocellulose. Its physical properties are Hsted in Table 7 (118-122). [Pg.13]

Cobalt difluoride [10026-17-2] C0F2, is a pink solid having a magnetic moment of 4, 266 x 10 J/T (4.6 Bohr magneton) (1) and closely resembling the ferrous (Fep2) compounds. Physical properties are Hsted in Table 1. Cobalt(II) fluoride is highly stable. No decomposition or hydrolysis has been observed in samples stored in plastic containers for over three years. [Pg.178]

Table 2. Physical Properties of Commercial Rigid Foamed Plastics ... Table 2. Physical Properties of Commercial Rigid Foamed Plastics ...
Miscellaneous Properties. The acoustical properties of polymers are altered considerably by their fabrication into a ceUular stmcture. Sound transmission is altered only slightly because it depends predominandy on the density of the barrier (in this case, the polymer phase). CeUular polymers by themselves are, therefore, very poor materials for reducing sound transmission. They are, however, quite effective in absorbing sound waves of certain frequencies (150) materials with open ceUs on the surface are particulady effective. The combination of other advantageous physical properties with fair acoustical properties has led to the use of several different types of plastic foams in sound-absorbing constmctions (215,216). The sound absorption of a number of ceUular polymers has been reported (21,150,215,217). [Pg.415]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

Glycols such as neopentyl glycol, 2,2,4-trimethyl-l,3-pentaiiediol, 1,4-cyclohexanedimethanol, and hydroxypivalyl hydroxypivalate are used in the synthesis of polyesters (qv) and urethane foams (see Foamed plastics). Their physical properties are shown in Table 1 (1 6). [Pg.371]

In addition to time-related effects, the soUd-state physical properties are also affected by adsorbed water, which functions as a plasticizer. Water pickup is affected by the nature of the cation, with sodium ionomers absorbing about 10 times the level of the zinc equivalent (6) under the same conditions. Drying must be carried out at temperatures below 100°C and is therefore a slow process. In commercial practice, ionomers are suppUed dry, and techniques have been developed to minimize moisture absorption during processing. [Pg.406]

Typical chemical stmctures and representative sources of different classes of synthetics are given in Table 6. Properties and uses of representative synthetics foUow in Table 7. In addition to considering thek physical properties, selection is needed of appropriate paints, seals, hoses, plastics, and electrical insulation to avoid problems with the pronounced solvency and plasticizing action of many of these synthetic oils. [Pg.243]

Plastic Sheet. Poly(methyl methacrylate) plastic sheet is manufactured in a wide variety of types, including cleat and colored transparent, cleat and colored translucent, and colored semiopaque. Various surface textures ate also produced. Additionally, grades with improved weatherabiUty (added uv absorbers), mat resistance, crazing resistance, impact resistance, and flame resistance ate available. Selected physical properties of poly(methyl methacrylate) sheet ate Hsted in Table 12 (102). [Pg.269]

Physical Properties. LLDPE is a sernicrystaUine plastic whose chains contain long blocks of ethylene units that crystallize in the same fashion as paraffin waxes or HDPE. The degree of LLDPE crystallinity depends primarily on the a-olefin content in the copolymer (the branching degree of a resin) and is usually below 40—45%. The principal crystalline form of LLDPE is orthorhombic (the same as in HDPE) the cell parameters of nonbranched PE are a = 0.740 nm, b = 0.493 nm, and c (the direction of polymer chains) = 0.2534 nm. Introduction of branching into PE molecules expands the cell slightly thus a increases to 0.77 nm and b to around 0.50 nm. [Pg.395]

Physical Properties. Table 3 Hsts physical properties of stereoregular polymers of several higher a-olefins. Crystal ceU parameters of these polymers ate available (34—36). AU. stereoregular polyolefins have helix conformations ia the crystalline state. Their densities usually range from 0.90 to 0.95 g/cm. Crystalline PMP, however, represents an exception its density is only 0.812—0.815 g/cm, lower even than that of amorphous PMP (0.835—0.840 g/cm ), thus making it one of the lowest densities among plastics. [Pg.427]

Uses. Phthabc anhydride is used mainly in plasticizers, unsaturated polyesters, and alkyd resins (qv). PhthaUc plasticizers consume 54% of the phthahc anhydride in the United States (33). The plasticizers (qv) are used mainly with poly(vinyl chloride) to produce flexible sheet such as wallpaper and upholstery fabric from normally rigid polymers. The plasticizers are of two types diesters of the same monohydric alcohol such as dibutyl phthalate, or mixed esters of two monohydric alcohols. The largest-volume plasticizer is di(2-ethylhexyl) phthalate [117-81-7] which is known commercially as dioctyl phthalate (DOP) and is the base to which other plasticizers are compared. The important phthahc acid esters and thek physical properties are Hsted in Table 12. The demand for phthahc acid in plasticizers is naturally tied to the growth of the flexible poly(vinyl chloride) market which is large and has been growing steadily. [Pg.485]


See other pages where Plastics physical properties is mentioned: [Pg.136]    [Pg.137]    [Pg.420]    [Pg.494]    [Pg.561]    [Pg.453]    [Pg.402]    [Pg.360]    [Pg.136]    [Pg.137]    [Pg.420]    [Pg.494]    [Pg.561]    [Pg.453]    [Pg.402]    [Pg.360]    [Pg.271]    [Pg.232]    [Pg.13]    [Pg.272]    [Pg.378]    [Pg.454]    [Pg.178]    [Pg.404]    [Pg.70]    [Pg.72]    [Pg.72]    [Pg.18]    [Pg.188]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Additives Which Modify Physical Properties 1 Plasticizers

Elastic-Plastic Physical Properties

Physical Properties Under Elastic-Plastic Compression

Physical properties tests, plastics

Physical properties, of plastics

Plasticizers physical properties

© 2024 chempedia.info