Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plastic resiliency

Plastic resiliency Every bone must be sufficiently resilient in itself and mobile in the sutures to move through its normal range without strain. [Pg.565]

The property of polybutadiene of most interest to the mbber compounder is excellent abrasion resistance coupled with excellent resilience. The polymer has very high rebound and low heat generation. With a few exceptions, such as the core of soHd golf balls, the polymer is blended with other polymers to take advantage of its excellent abrasion and rebound. Uses in North America are as follows tires, 500,000 t (74%) plastic modification,... [Pg.231]

Tissue Conditioners. Tissue conditioners are gels designed to alleviate the discomfort from soft-tissue injury, eg, extractions. Under a load, they exhibit viscous flow, forming a soft cushion between the hard denture and the oral tissues. The polymer in tissue conditioners is often the same as that used for resilient liners. The liquid is a plasticizer containing an alcohol of low volatility (219,220). [Pg.490]

The alcohol swells the poly (ethyl methacrylate) beads, rapidly promoting diffusion of the plasticizer into the polymer. As a result of the polymer-chain entanglement, a gel is formed. The conditioner is applied to the denture and provides a cushioning effect alcohol and plasticizer are slowly leached out, and the material becomes rigid. To ensure resiliency, the conditioner must be replaced after a few days. Some materials exhibit high flow over a short period compared with others with low initial flow the latter remain active longer. [Pg.490]

Resilient materials such as rubber and some plastics may be useful in certain applications, especially under conditions of low cavitation intensities. However, such materials are subject to disbondment at the metal and elastomer interface at high cavitation intensities, even if the exposure is brief. [Pg.280]

It is in the second two of these cost components that, in relation to other materials, plastics can offer particular advantages. Fabrication costs include power, labour, consumables, etc and Table 1.10 shows that, in terms of the overall energy consumption, plastics come out much better than metals. Performance costs relate to servicing, warranty claims, etc. On this basis plastics can be very attractive to industries manufacturing consumer products because they can offer advantages such as colour fasmess, resilience, toughness, corrosion resistance and uniform quality - all features which help to ensure a reliable product. [Pg.37]

TPEs are materials that possess, at normal temperatures, the characteristic resilience and recovery from the extension of crosslinked elastomers and exhibit plastic flow at elevated temperatures. They can be fabricated by the usual techniques such as blow molding, extrusion, injection molding, etc. This effect is associated with certain interchain secondary valence forces of attraction, which have the effect of typical conventional covalent crosslinks, but at elevated temperatures, the secondary... [Pg.634]

Thermoplastic elastomers (TPES), as the name indicates, are plastic polymers with the physical properties of rubbers. They are soft, flexible, and possess the resilience needed of rubbers. However, they are processed like thermoplastics by extrusion and injection molding. [Pg.358]

Vickers and Knoop indentors, Barcol hardness, and Shore durometers (2) (b) to measure the resistance of a material to scratching by another material or by a sharp point, such as the Bierbaum hardness or scratch-resistance test and the Moh one for hardness and (c) to measure rebound efficiency or resilience, such as the various Rockwell hardness tests. The various tests provide different behavior characteristics for plastics, as described by different ASTM standards such as D 785. The ASTM and other sources provide different degrees of comparison for some of these tests. [Pg.315]

Antidepressant Drugs. Figure 1 Effects of stress as a model for depression and the reversal by the use of antidepressants. Multiple intracellular targets might be involved in the regulation of plasticity and resilience by antidepressants, which block extracellular transporters. Adapted from [1],... [Pg.113]

In a block copolymer, a long segment made from one monomer is followed by a segment formed from the other monomer. One example is the block copolymer formed from styrene and butadiene. Pure polystyrene is a transparent, brittle material that is easily broken polybutadiene is a synthetic rubber that is very resilient, but soft and opaque. A block copolymer of the two monomers produces high-impact polystyrene, a material that is a durable, strong, yet transparent plastic. A different formulation of the two polymers produces styrene-butadiene rubber (SBR), which is used mainly for automobile tires and running shoes, but also in chewing gum. [Pg.887]

Manji, H. K., Quiroz, J.A., Sporn, J. et al. (2003). Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol. Psychiatry, 53(8), 707-42. [Pg.167]

Plasticizers Enhance flexibility, resiliency, melt flow Phthalates... [Pg.593]

The choice of abradant should be made primarily to give the best correlation with service, but in practice is often chosen largely for reasons of convenience. In laboratory tests the most common are abrasive wheels (vitreous or resilient), abrasive papers or cloth and metal knives . The usual abrasive wheels and papers really only relate to situations where cutting abrasion predominates. Where plastics are used in some form of bearing the conditions will involve much smoother surfaces and materials such as smooth metal plates would be more appropriate. A problem with smooth materials is that they abrade relatively slowly and, if conditions are accelerated, give rise to excessive heat build up. [Pg.77]

Dow Plastics is to unveil a new resilient polyolefin foam, Strandfoam, which offers packagers of lightweight electronic equipment and components reduced package size, and savings in materials and shipping costs. Strandfoam is made of a special blend of PE and is produced by a proprietary extrusion process that yields fused strands of closed-cell foam with a network of air channels parallel to the foam strands. Strandfoam provides the required levels of protection with substantially smaller volumes of foam compared to urethane. [Pg.110]

Figure 4.20.A shows a more recent cell reported by Cobben et al. It consists of three Perspex blocks, of which two (A) are identical and the third (B) different. Part A is a Perspex block (1) furnished with two pairs of resilient hooks (3) for electrical contact. With the aid of a spring, the hooks press at the surface of the sensor contact pads (4), the back side of which rests on the Perspex siuface, so the sensor gate is positioned in the centre of the block, which is marked by an engraved cross as in the above-described wall-jet cell. Part B is a prismatic Perspex block (2) (85 x 24 x 10 mm ) into which a Z-shaped flow channel of 0.5 mm diameter is drilled. Each of the wedges of the Z reaches the outside of the block. The Z-shaped flow-cell thus built has a zero dead volume. As a result, the solution volume held between the two CHEMFETs is very small (3 pL). The cell is sealed by gently pushing block A to B with a lever. The inherent plasticity of the PVC membrane ensures water-tight closure of the cell. The closeness between the two electrodes enables differential measurements with no interference from the liquid junction potential. The differential signal provided by a potassium-selective and a sodium-selective CHEMFET exhibits a Nemstian behaviour and is selective towards potassium in the presence of a (fixed) excess concentration of sodium. The combined use of a highly lead-selective CHEMFET and a potassium-selective CHEMFET in this type of cell also provides excellent results. Figure 4.20.A shows a more recent cell reported by Cobben et al. It consists of three Perspex blocks, of which two (A) are identical and the third (B) different. Part A is a Perspex block (1) furnished with two pairs of resilient hooks (3) for electrical contact. With the aid of a spring, the hooks press at the surface of the sensor contact pads (4), the back side of which rests on the Perspex siuface, so the sensor gate is positioned in the centre of the block, which is marked by an engraved cross as in the above-described wall-jet cell. Part B is a prismatic Perspex block (2) (85 x 24 x 10 mm ) into which a Z-shaped flow channel of 0.5 mm diameter is drilled. Each of the wedges of the Z reaches the outside of the block. The Z-shaped flow-cell thus built has a zero dead volume. As a result, the solution volume held between the two CHEMFETs is very small (3 pL). The cell is sealed by gently pushing block A to B with a lever. The inherent plasticity of the PVC membrane ensures water-tight closure of the cell. The closeness between the two electrodes enables differential measurements with no interference from the liquid junction potential. The differential signal provided by a potassium-selective and a sodium-selective CHEMFET exhibits a Nemstian behaviour and is selective towards potassium in the presence of a (fixed) excess concentration of sodium. The combined use of a highly lead-selective CHEMFET and a potassium-selective CHEMFET in this type of cell also provides excellent results.
Polyvinyl chloride is processed into a number of forms by including additives. Additives are used to vary the properties of PVC so that it can be made soft and flexible or hard and rigid. Additives are also used to inhibit decomposition as a result of exposure to sunlight, ozone, and chemicals. Plasticizers are the primary additive included in PVC materials. Di(2-ethylhexyl) phthalate (DEHP) and a host of other phthalates are the most common plasticizers. Plasticizers impart flexibility, thermal stability, strength, and resilience to PVC compounds. PVCs without plasticizers are classified as UPVC the letters stand for unplasticized polyvinyl chloride. UPVC is rigid and used for conduit, containers, gutters, and floor tiles. Other common PVC additives are biocides, lubricants, and pigments. [Pg.296]

Polyethers. Acetal Resins. These stabilized polyoxymethy-lenes were introduced dramatically by DuPont and Celanese as engineering plastics to replace non-ferrous metals. Good mechanical strength, resilience, fatigue-resistance, lubricity, abrasion-resistance, heat distortion temperature, water and solvent-resistance can approach the behavior of metals on a volume basis, while processability, color possibilities, and corrosion-resistance are superior. Major weakness is sensitivity to thermal, oxidative, and ionic degradation. [Pg.22]

Machinists have learned through experience, and are certainly well aware, that machining plastics is profitable. While machining plastics is not particularly burdensome, there are specific considerations that must be followed when machining plastics. Because plastics have a much lower deflection temperature than metals if too great a heat build up is allowed, the plastic may tend to gum tooling. Plastics are more resilient than metals when close tolerance is required. The operator must compensate for the resilience effect of plastic. [Pg.111]

Polyvinyl chloride (PVC) had been developed by a number of chemical companies in the 1920s. The problem with this material, however, was that it lost resiliency when heated. In 1929, Waldo Semon, a chemist at BFGoodrich, found that PVC could be made into a workable material by the addition of a plasticizer. Semon got the idea of using plasticized PVC as a shower curtain when he observed his wife sewing together a shower curtain made of rubberized cotton. [Pg.617]


See other pages where Plastic resiliency is mentioned: [Pg.648]    [Pg.397]    [Pg.648]    [Pg.397]    [Pg.489]    [Pg.280]    [Pg.294]    [Pg.444]    [Pg.1]    [Pg.152]    [Pg.264]    [Pg.266]    [Pg.268]    [Pg.269]    [Pg.412]    [Pg.148]    [Pg.905]    [Pg.497]    [Pg.112]    [Pg.174]    [Pg.242]    [Pg.413]    [Pg.414]    [Pg.96]    [Pg.409]    [Pg.139]    [Pg.55]    [Pg.46]    [Pg.114]    [Pg.335]   
See also in sourсe #XX -- [ Pg.565 ]




SEARCH



Resiliency

© 2024 chempedia.info