Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plasma secondary

In a RF plasma secondary electrons from the electrode do not contribute to the plasma as the positive ions cannot follow... [Pg.278]

Low-temperature plasmas are also generated by the use of electron cyclotron resonance (ECR) in a gas at low pressure, 10 to 10 Pa, where secondary reactions are probably negligible. However, in an afterglow of an ECR plasma, secondary reactions cannot be disregarded. [Pg.6]

Electron impact ionization of the parent molecule is only one of several important ion formation processes in nonthermal plasmas. Secondary processes such as electron impact ionization of neutral fragments produced by dissociation of the parent molecule and ion-molecule reactions are other mechanisms contributing to the formation of plasma ions. It is interesting to compare ion abundances in a realistic plasma with the ion abundances predicted from electron impact ionization cross sections measured under single-collision conditions. Although mass spectrometry of plasma ions is a known and well-developed diagnostic method (Osher, 1965 Drawln, 1968 Schmidt et al., 1999), its application to plasmas for thin-film deposition is not very common. The main reasons are deleterious effects of insulating deposits on the ion collection orifice (which connects the mass spectrometer to the plasma) and on the ion transfer optics, which render it... [Pg.177]

Another unique approach is to produce a dry aerosol from a standard aqueous solution with a pneumatic nebulizer and desolvator. The aerosol produced by this apparatus is combined with the aerosol from the ablation cell using a dual gas-flow sample introduction system and a gas-mixing cell. By varying the concentration of the analyte in the standard aqueous solution, calibration curves can be created by this procedure. The composition of the standard solution can be adjusted to match the matrix composition of the bulk material of the solid sample, thereby simulating the behavior of the ablated solid in the plasma. Secondary standards can be created by this technique from selected samples. Future calibration curves can be prepared from ablating these secondary standards. [Pg.85]

Much of the energy deposited in a sample by a laser pulse or beam ablates as neutral material and not ions. Ordinarily, the neutral substances are simply pumped away, and the ions are analyzed by the mass spectrometer. To increase the number of ions formed, there is often a second ion source to produce ions from the neutral materials, thereby enhancing the total ion yield. This secondary or additional mode of ionization can be effected by electrons (electron ionization, El), reagent gases (chemical ionization. Cl), a plasma torch, or even a second laser pulse. The additional ionization is often organized as a pulse (electrons, reagent gas, or laser) that follows very shortly after the... [Pg.10]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Hoechst WHP Process. The Hoechst WLP process uses an electric arc-heated hydrogen plasma at 3500—4000 K it was developed to industrial scale by Farbwerke Hoechst AG (8). Naphtha, or other Hquid hydrocarbon, is injected axially into the hot plasma and 60% of the feedstock is converted to acetylene, ethylene, hydrogen, soot, and other by-products in a residence time of 2—3 milliseconds Additional ethylene may be produced by a secondary injection of naphtha (Table 7, Case A), or by means of radial injection of the naphtha feed (Case B). The oil quenching also removes soot. [Pg.386]

Hydrogen plasma process using naphtha. Case A secondary injection of naphtha Case B radial injection of the naphtha feed. Hydrogen plasma process using cmde oil. [Pg.386]

Spectrometric Analysis. Remarkable developments ia mass spectrometry (ms) and nuclear magnetic resonance methods (nmr), eg, secondary ion mass spectrometry (sims), plasma desorption (pd), thermospray (tsp), two or three dimensional nmr, high resolution nmr of soHds, give useful stmcture analysis information (131). Because nmr analysis of or N-labeled amino acids enables determiaation of amino acids without isolation from organic samples, and without destroyiag the sample, amino acid metaboHsm can be dynamically analy2ed (132). Proteia metaboHsm and biosynthesis of many important metaboUtes have been studied by this method. Preparative methods for labeled compounds have been reviewed (133). [Pg.285]

Several ion sources are particularly suited for SSIMS. The first produces positive noble gas ions (usually argon) either by electron impact (El) or in a plasma created by a discharge (see Fig. 3.18 in Sect. 3.2.2.). The ions are then extracted from the source region, accelerated to the chosen energy, and focused in an electrostatic ion-optical column. More recently it has been shown that the use of primary polyatomic ions, e. g. SF5, created in FI sources, can enhance the molecular secondary ion yield by several magnitudes [3.4, 3.5]. [Pg.88]

Positive secondary ions (SI" ) are repelled by an electrode in e-beam SNMS or completely (in DBM) or widely (in HFM, see below) re-attracted by the sample surface in HF-plasma SNMS. Ionized plasma species (Ar", contamination) are suppressed by energy filtering. [Pg.125]

The intrinsic drawback of LIBS is a short duration (less than a few hundreds microseconds) and strongly non-stationary conditions of a laser plume. Much higher sensitivity has been realized by transport of the ablated material into secondary atomic reservoirs such as a microwave-induced plasma (MIP) or an inductively coupled plasma (ICP). Owing to the much longer residence time of ablated atoms and ions in a stationary MIP (typically several ms compared with at most a hundred microseconds in a laser plume) and because of additional excitation of the radiating upper levels in the low pressure plasma, the line intensities of atoms and ions are greatly enhanced. Because of these factors the DLs of LA-MIP have been improved by one to two orders of magnitude compared with LIBS. [Pg.234]

As plant cells grow, they deposit new layers of cellulose external to the plasma membrane by exocytosis. The newest regions, which are laid down successively in three layers next to the plasma membrane, are termed the secondary cell wall. Because the latter varies in its chemical composition and structure at different locations around the cell, Golgi-derived vesicles must be guided by the cytoskeleton... [Pg.14]

The diversity in primary, secondary, tertiary, and quaternary stmctures of proteins means that few generalisations can be made concerning their chemical properties. Some fulfil stmctural roles, such as the collagens (found in bone) and keratin (found in claws and beaks), and are insoluble in all solvents. Others, such as albumins or globulins of plasma, are very soluble in water. Still others, which form part of membranes of cells, are partly hydrophilic ( water-loving , hence water-soluble) and partly lipophilic ( lipid-loving , hence fat-soluble). [Pg.21]

In a third study the time course of the effects of intravenous and intracoronary injections of cysteinyl leukotrienes on metabolic parameters and systemic and coronary hemodynamics was examined in patients with normal coronary arteries [32]. LTD4 (3 nmol, injected into the left coronary artery) induced an early (20 s), transient fall in mean arterial pressure paralleled by rises in heart rate and plasma levels of epinephrine and norepinephrine, all of which had returned to baseline by 10 min. CVR rose at 10 and 15 min and myocardial oxygen extraction at 15 min. Thus, small doses of cysteinyl leukotrienes may induce both an early, transient fall in mean arterial pressure, with secondary sympathoadrenergic activation, and a later increase in small coronary arteriolar resistance. [Pg.105]


See other pages where Plasma secondary is mentioned: [Pg.1073]    [Pg.1073]    [Pg.390]    [Pg.189]    [Pg.283]    [Pg.1073]    [Pg.1073]    [Pg.390]    [Pg.189]    [Pg.283]    [Pg.2798]    [Pg.37]    [Pg.98]    [Pg.104]    [Pg.109]    [Pg.136]    [Pg.399]    [Pg.399]    [Pg.155]    [Pg.545]    [Pg.549]    [Pg.135]    [Pg.135]    [Pg.109]    [Pg.559]    [Pg.43]    [Pg.50]    [Pg.518]    [Pg.256]    [Pg.396]    [Pg.622]    [Pg.625]    [Pg.124]    [Pg.481]    [Pg.812]    [Pg.35]    [Pg.327]    [Pg.33]    [Pg.90]    [Pg.336]   
See also in sourсe #XX -- [ Pg.389 ]




SEARCH



Secondary Plasma Reactor

© 2024 chempedia.info