Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Myocardial oxygenation

Amiodarone dilates arteriolar vascular smooth muscle, especiady coronary arteries, and thus exhibits antianginal effects. Its effects on the peripheral vasculature to decrease resistance leads to a decrease in left ventricular stroke work and a decrease in myocardial oxygen consumption. The dmg rarely produces hypotension that requires discontinuation of the dmg (1,2). [Pg.121]

Verapamil. Verapamil hydrochloride is a pbenyl alkyl amine and is considered the prototype of the Class I calcium channel blockers. Verapamil is also a potent inhibitor of coronary artery spasm and is useful in Prinzmetal s angina and in unstable angina at rest. Verapamil produces negative chronotropic and inotropic effects. These two actions reduce myocardial oxygen consumption and probably account for the effectiveness of verapamil in chronic stable effort angina (98,99). Moreover, verapamil is an effective antihypertensive agent. [Pg.126]

In a third study the time course of the effects of intravenous and intracoronary injections of cysteinyl leukotrienes on metabolic parameters and systemic and coronary hemodynamics was examined in patients with normal coronary arteries [32]. LTD4 (3 nmol, injected into the left coronary artery) induced an early (20 s), transient fall in mean arterial pressure paralleled by rises in heart rate and plasma levels of epinephrine and norepinephrine, all of which had returned to baseline by 10 min. CVR rose at 10 and 15 min and myocardial oxygen extraction at 15 min. Thus, small doses of cysteinyl leukotrienes may induce both an early, transient fall in mean arterial pressure, with secondary sympathoadrenergic activation, and a later increase in small coronary arteriolar resistance. [Pg.105]

Another mechanism to maintain CO when contractility is low is to increase heart rate. This is achieved through sympathetic nervous system (SNS) activation and the agonist effect of norepinephrine on P-adrenergic receptors in the heart. Sympathetic activation also enhances contractility by increasing cytosolic calcium concentrations. SV is relatively fixed in HF, thus HR becomes the major determinant of CO. Although this mechanism increases CO acutely, the chronotropic and inotropic responses to sympathetic activation increase myocardial oxygen demand, worsen underlying ischemia, contribute to proarrhythmia, and further impair both systolic and diastolic function. [Pg.35]

MV02, myocardial oxygen consumption SNS, sympathetic nervous system. [Pg.36]

Higher vasopressin concentrations are linked to dilutional hyponatremia and a poor prognosis in HF. Vasopressin exerts its effects through vasopressin type la (Vla) and vasopressin type 2 (V2) receptors.5,7 Vasopressin type la stimulation leads to vasoconstriction, while actions on the V2 receptor cause free water retention through aquaporin channels in the collecting duct. Vasopressin increases preload, afterload, and myocardial oxygen demand in the failing heart. [Pg.37]

There is a paucity of clinical trial evidence comparing the benefit of diuretics to other therapies for symptom relief or long-term outcomes. Additionally, excessive preload reduction can lead to a decrease in CO resulting in reflex increase in sympathetic activation, renin release, and the expected consequences of vasoconstriction, tachycardia, and increased myocardial oxygen demand. Careful use of diuretics is recommended to avoid overdiuresis. Monitor serum electrolytes such as potassium, sodium, and magnesium frequently to identify and correct imbalances. Monitor serum creatinine and blood urea nitrogen daily at a minimum to assess volume depletion and renal function. [Pg.55]

O Ischemic heart disease results from an imbalance between myocardial oxygen demand and oxygen supply that is most often due to coronary atherosclerosis. Common clinical manifestations of ischemic heart disease include chronic stable angina and the acute coronary syndromes of unstable angina, non-ST-segment elevation myocardial infarction, and ST-segment elevation myocardial infarction. [Pg.63]

Therapies to alleviate and prevent angina are aimed at improving the balance between myocardial oxygen demand and... [Pg.71]

TABLE 4-6. Effects of Anti-anginal Medications on Myocardial Oxygen Demand and Supply... [Pg.76]

Acute coronary syndromes is a term that includes all clinical syndromes compatible with acute myocardial ischemia resulting from an imbalance between myocardial oxygen demand and supply.3 In contrast to stable angina, an ACS results primarily from diminished myocardial blood flow secondary to an occlusive or partially occlusive coronary artery thrombus. Acute coronary syndromes are classified according to electrocardiogram (ECG) changes into STE ACS (STE MI) or NSTE ACS (NSTE MI and unstable angina) (Fig. 5-1). An STE MI, formerly... [Pg.84]

Intravenous or oral doses of a P-blocker should be administered early in the care of a patient with STE ACS, and then oral agents should be continued indefinitely. Early administration of a P-blocker to patients lacking a contraindication within the first 24 hours of hospitalization is a quality care indicator.2,3 In ACS the benefit of P-blockers mainly results from the competitive blockade of P,-adrenergic receptors located on the myocardium. Pi-Blockade produces a reduction in heart rate, myocardial contractility, and blood pressure, decreasing myocardial oxygen demand. As a result of these effects, P-blockers reduce the risk for recurrent ischemia, increase in infarct size and risk of reinfarction, and occurrence of ventricular arrhythmias in the hours and days following MI.39... [Pg.98]


See other pages where Myocardial oxygenation is mentioned: [Pg.409]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.126]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.131]    [Pg.299]    [Pg.104]    [Pg.36]    [Pg.37]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.60]    [Pg.64]    [Pg.64]    [Pg.66]    [Pg.67]    [Pg.67]    [Pg.70]    [Pg.71]    [Pg.75]    [Pg.76]    [Pg.76]    [Pg.76]    [Pg.77]    [Pg.78]    [Pg.78]    [Pg.81]    [Pg.82]    [Pg.98]    [Pg.113]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



© 2024 chempedia.info