Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Piezoelectric ultrasonic

Barium carbonate also reacts with titania to form barium titanate [12047-27-7] BaTiO, a ferroelectric material with a very high dielectric constant (see Ferroelectrics). Barium titanate is best manufactured as a single-phase composition by a soHd-state sintering technique. The asymmetrical perovskite stmcture of the titanate develops a potential difference when compressed in specific crystallographic directions, and vice versa. This material is most widely used for its strong piezoelectric characteristics in transducers for ultrasonic technical appHcations such as the emulsification of Hquids, mixing of powders and paints, and homogenization of milk, or in sonar devices (see Piezoelectrics Ultrasonics). [Pg.480]

Figure 7. Schematic representation of a piezoelectric ultrasonic transducer. Figure 7. Schematic representation of a piezoelectric ultrasonic transducer.
Chemical and physical processing techniques for ferroelectric thin films have undergone explosive advancement in the past few years (see Ref. 1, for example). The use of PZT (PbZri- cTi c03) family ferroelectrics in the nonvolatile and dynamic random access memory applications present potentially large markets [2]. Other thin-film devices based on a wide variety of ferroelectrics have also been explored. These include multilayer thin-film capacitors [3], piezoelectric or electroacoustic transducer and piezoelectric actuators [4-6], piezoelectric ultrasonic micromotors [7], high-frequency surface acoustic devices [8,9], pyroelectric intrared (IR) detectors [10-12], ferroelectric/photoconduc-tive displays [13], electrooptic waveguide devices or optical modulators [14], and ferroelectric gate and metal/insulator/semiconductor transistor (MIST) devices [15,16]. [Pg.481]

The piezoelectric ultrasonic transducer is more common. When a voltage is applied to a piezoelectric material, it will compress or expand. If the voltage is alternating at ultrasonic frequency, the piezoelectric will compress and expand at the same frequency. The mechanical vibrations can be transferred to a diaphragm to produce ultrasonic sound waves. [Pg.112]

The use of this motor in direct drive means that the complete function is obtained without any additional gear mechanism (for speed reduction, or for converting rotation in translation). Optics is probably the domain where the use of the piezoelectric motors is the most advanced. The most famous example, is the Canon camera, which includes an auto focus zoom based on a piezoelectric ultrasonic motor (USM) since 1992 (Fig. 6.21) [12]. [Pg.116]

Following a principle used in piezoelectric ultrasonic motors [60], T. Aku-ta [61] has built the first magnetostrictive friction motor. This stator is made of pairs of orthogonal actuators excited with sinusoidal 90° phase-shift currents, which produce an elliptical vibration. The modeling of such magnetostrictive stators [42] has shown that in quasi-static operation a good elliptical motion is produced. It has also been shown that there are many coupled modes, but none of them provides a satisfactory elliptical motion. Therefore, unlike piezoelectric motors, this motor cannot operate at resonance. As a consequence and in relation to the previous analysis of power (Fig. 6.34), the efficiency is comparatively weak. Its other characteristics are a speed of 40°/s and a torque of 1.8 Nm [62]. [Pg.140]

Schematic of the linear piezoelectric ultrasonic actuator (adapted from Friend et al., 2008)... Schematic of the linear piezoelectric ultrasonic actuator (adapted from Friend et al., 2008)...
Friend, J., Yeo, L. and Hogg, M. (2008) Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman s criteria . Applied Physics Letters, 92, 014107. [Pg.96]

Watson, B., Friend, J. and Yeoa, L. (2009) Piezoelectric ultrasonic micro/milli-scale actuators , Sensors and Actuators A Physical, 152(2) 219-33. [Pg.98]

Hence for practical concentration measurements, (Jj must be reduced to a minimum in order to maximize the validity range of Lambert-Beer s law. With optical or x-ray extinction measurements, this is achieved by reducing the receiver s aperture angle but it appears to be difficult to reduce Pj below about Pj = 10". 10". With piezoelectric ultrasonic receivers however, pj is extremely low, since the electric output from the receiver is proportional to the integral of all mechanical stresses over the sensor volume. Hence, upon incidence on a plane piezoelectric receiver, only a plane wave can produce a significant signal, whereas the stresses produced by scattered or multiply scattered waves will cancel out statistically, see Fig. 5. [Pg.493]

Titanium IV) oxide, T1O2. See titanium dioxide. Dissolves in concentrated alkali hydroxides to give titanates. Mixed metal oxides, many of commercial importance, are formed by TiOj. CaTiOj is perovskite. BaTiOa, per-ovskite related structure, is piezoelectric and is used in transducers in ultrasonic apparatus and gramophone pickups and also as a polishing compound. Other mixed oxides have the il-menite structure (e.g. FeTiOj) and the spinel structure (e.g. MgjTiO ). [Pg.400]

Fokker Bond Tester. An ultrasonic inspection technique commonly used for aircraft structures is based on ultrasonic spectroscopy [2]. Commercially available instruments (bond testers) used for this test operate on the principle of mechanical resonance in a multi-layer structure. A piezoelectric probe shown in Figure 3b, excited by a variable frequency sine signal is placed on the surface of the inspected structure. A frequency spectrum in the range of some tens of kHz to several MHz is acquired by the instrument, see Figure 3a. [Pg.108]

Based upon a piezoelectric 1-3-composite material, air-bome ultrasonic probes for frequencies up to 2 MHz were developped. These probes are characterized by a bandwidth larger than 50 % as well as a signal-to-noise ratio higher than 100 dB. Applications are the thickness measurement of thin powder layers, the inspection of sandwich structures, the detection of surface near cracks in metals or ceramics by generation/reception of Rayleigh waves and the inspection of plates by Lamb waves. [Pg.840]

For ultrasonic nebulizers, the liquid is fragmented into droplets by an acoustic standing wave, usually produced by a piezoelectric transducer. [Pg.400]

The development of active ceramic-polymer composites was undertaken for underwater hydrophones having hydrostatic piezoelectric coefficients larger than those of the commonly used lead zirconate titanate (PZT) ceramics (60—70). It has been demonstrated that certain composite hydrophone materials are two to three orders of magnitude more sensitive than PZT ceramics while satisfying such other requirements as pressure dependency of sensitivity. The idea of composite ferroelectrics has been extended to other appHcations such as ultrasonic transducers for acoustic imaging, thermistors having both negative and positive temperature coefficients of resistance, and active sound absorbers. [Pg.206]

Piezoelectric and Electrostrictive Device Applications. Devices made from ferroelectric materials utilizing their piezoelectric or electrostrictive properties range from gas igniters to ultrasonic cleaners (or welders) (72). [Pg.207]

Another important class of titanates that can be produced by hydrothermal synthesis processes are those in the lead zirconate—lead titanate (PZT) family. These piezoelectric materials are widely used in manufacture of ultrasonic transducers, sensors, and minia ture actuators. The electrical properties of these materials are derived from the formation of a homogeneous soHd solution of the oxide end members. The process consists of preparing a coprecipitated titanium—zirconium hydroxide gel. The gel reacts with lead oxide in water to form crystalline PZT particles having an average size of about 1 ]lni (Eig. 3b). A process has been developed at BatteUe (Columbus, Ohio) to the pilot-scale level (5-kg/h). [Pg.500]

Nickel is being used ia magnetostrictive transducers ia some ultrasonic devices, eg, solderiag irons and ultrasonic cleaners, because of its moderate magnetostriction and availabiUty. This market, however, is dominated by piezoelectric transducers of lead zirconate—titanate (PZT) (see Ultrasonics). [Pg.374]

Sonic Methods A fixed-point level detector based on sonic-propagation characteristics is available for detection of a liquid-vapor interface. This device uses a piezoelectric transmitter and receiver, separated by a short gap. When the gap is filled with liquid, ultrasonic energy is transmitted across the gap, and the receiver actuates a relay. With a vapor filling the gap, the transmission of ultrasonic energy is insufficient to actuate the receiver. [Pg.764]

The piezoelectric phenomena have been used to generate ultrasonic waves up to microwave frequencies using thin polyfvinylidene fluoride) transducers. In the audio range a new type of loudspeaker has been introduced using the transverse piezolectric effect on a mechanically biased membrane. This development has been of considerable interest to telephone engineers and scientists. [Pg.377]

The piezoelectric constant studies are perhaps the most unique of the shock studies in the elastic range. The various investigations on quartz and lithium niobate represent perhaps the most detailed investigation ever conducted on shock-compressed matter. The direct measurement of the piezoelectric polarization at large strain has resulted in perhaps the most precise determinations of the linear constants for quartz and lithium niobate by any technique. The direct nature of the shock measurements is in sharp contrast to the ultrasonic studies in which the piezoelectric constants are determined indirectly as changes in wavespeed for various electrical boundary conditions. [Pg.95]


See other pages where Piezoelectric ultrasonic is mentioned: [Pg.2257]    [Pg.480]    [Pg.2240]    [Pg.15]    [Pg.37]    [Pg.144]    [Pg.71]    [Pg.21]    [Pg.409]    [Pg.2257]    [Pg.480]    [Pg.2240]    [Pg.15]    [Pg.37]    [Pg.144]    [Pg.71]    [Pg.21]    [Pg.409]    [Pg.52]    [Pg.714]    [Pg.841]    [Pg.107]    [Pg.148]    [Pg.148]    [Pg.149]    [Pg.209]    [Pg.209]    [Pg.127]    [Pg.520]    [Pg.343]    [Pg.349]    [Pg.72]    [Pg.58]    [Pg.1055]    [Pg.212]   


SEARCH



© 2024 chempedia.info