Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physics pigments

In a number of cases, identifications have been extremely difficult, because the materials were synthetic and knowledge of their existence had actually been lost. For example, several rather commonly encountered synthetic pigments, such as the lead-tin yellow often found in Renaissance and Baroque paintings, were originally misidentified or left unidentifiable until extensive research, including analyses of elemental composition and chemical and physical properties, and repHcation experiments, led to proper identification of the material and its manufacturing process. [Pg.418]

Black Pigments. The only black pigment used to an appreciable extent in inks is carbon black It is used in newsprinting, pubHcation, commercial and packaging printing therefore, in large quantities. Black pigments ate offered in fluffy or beaded forms and in a variety of particle sizes and physical properties. [Pg.248]

Lead Chloride. Lead dichloride, PbCl2, forms white, orthorhombic needles some physical properties are given in Table 1. Lead chloride is slightly soluble in dilute hydrochloric acid and ammonia and insoluble in alcohol. It is prepared by the reaction of lead monoxide or basic lead carbonate with hydrochloric acid, or by treating a solution of lead acetate with hydrochloric acid and allowing the precipitate to settle. It easily forms basic chlorides, such as PbCl Pb(OH)2 [15887-88 ] which is known as Pattinson s lead white, an artist s pigment. [Pg.68]

Physical Chemisty of Pigments in Paper Coating, TAPPI Press BookNo. 38, Technical Association of the Pulp and Paper Industry, Atianta, Ga., 1977. [Pg.14]

Other. A large variety of additives are used in paper-coatiag colors primarily to modify the physical properties of the colors (102). At high soHds concentrations in water, mineral pigment particles tend to associate and form viscous pastes. Dispersants (qv) are used to prevent this and to provide low viscosity slurries. Common dispersants include polyphosphates and sodium polyacrylate [9003-04-7]. Various water-soluble polymers are added to coatiag colors and act as water-retention agents and as rheology modifiers. [Pg.22]

Approximately 90% of the phthalocyanines (predominantly copper phthalocyanine) are used as pigments (qv). In addition, they have found acceptance in many types of dyestuffs, eg, direct and reactive dyes, water-soluble and solvent-soluble dyes with physical and chemical binding, a2o-reactive dyes, a2o nonreactive dyes, sulfur dyes, and vat dyes (1) (see Dyes Dyes, reactive). [Pg.506]

Phthalocyanine Dyes. In addition to their use as pigments, the phthalocyanines have found widespread appHcation as dyestuffs, eg, direct and reactive dyes, water-soluble dyes with physical or chemical binding, solvent-soluble dyes with physical or chemical binding, a2o reactive dyes, a2o nonreactive dyes, sulfur dyes, and wet dyes. The first phthalocyanine dyes were used in the early 1930s to dye textiles like cotton (qv). The water-soluble forms Hke sodium salts of copper phthalocyanine disulfonic acid. Direct Blue 86 [1330-38-7] (Cl 74180), Direct Blue 87 [1330-39-8] (Cl 74200), Acid Blue 249 [36485-85-5] (Cl 74220), and their derivatives are used to dye natural and synthetic textiles (qv), paper, and leather (qv). The sodium salt of cobalt phthalocyanine, ie. Vat Blue 29 [1328-50-3] (Cl 74140) is mostly appHed to ceUulose fibers (qv). [Pg.506]

The value of pigments results from their physical—optical properties. These ate primarily deterrniaed by the pigments physical characteristics (crystal stmcture, particle size and distribution, particle shape, agglomeration, etc) and chemical properties (chemical composition, purity, stabiUty, etc). The two most important physical—optical assets of pigments are the abiUty to color the environment in which they ate dispersed and to make it opaque. [Pg.4]

The most commonly measured pigment properties ate elemental analysis, impurity content, crystal stmcture, particle size and shape, particle size distribution, density, and surface area. These parameters are measured so that pigments producers can better control production, and set up meaningful physical and chemical pigments specifications. Measurements of these properties ate not specific only to pigments. The techniques appHed are commonly used to characterize powders and soHd materials and the measutiag methods have been standardized ia various iadustries. [Pg.4]

Whereas the production flow charts of inorganic pigments appear to be simple, the actual processes can be very compHcated. Many pigments are not pure chemical compounds, but can be multiphase systems contaminated with various impurities and modifiers. Because pigments are fine powders, the physical properties are as critical to their appHcation performance as are the chemical properties. [Pg.6]

Dyes, on the other hand, ate colored substances which ate soluble or go into solution during the appHcation process and impart color by selective absorption of light. In contrast to dyes, whose coloristic properties ate almost exclusively defined by their chemical stmcture, the properties of pigments also depend on the physical characteristics of its particles. [Pg.19]

D. Patterson, Pigments, Mn Introduction to their Physical Chemisty, Elsevier, New York, 1967. [Pg.38]

Some of the important parameters in the Bnchamp process are the physical state of the iron, the amount of water used, the amount and type of acid used, agitation efficiency, reaction temperature, and the use of various catalysts or additives. When these variables are properly controlled, the amine can be obtained in high yields while controlling the color and physical characteristics of the iron oxide pigment which is produced. [Pg.262]

The quaHty, ie, level of impurities, of the fats and oils used in the manufacture of soap is important in the production of commercial products. Fats and oils are isolated from various animal and vegetable sources and contain different intrinsic impurities. These impurities may include hydrolysis products of the triglyceride, eg, fatty acid and mono/diglycerides proteinaceous materials and particulate dirt, eg, bone meal and various vitamins, pigments, phosphatides, and sterols, ie, cholesterol and tocopherol as weU as less descript odor and color bodies. These impurities affect the physical properties such as odor and color of the fats and oils and can cause additional degradation of the fats and oils upon storage. For commercial soaps, it is desirable to keep these impurities at the absolute minimum for both storage stabiHty and finished product quaHty considerations. [Pg.150]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]


See other pages where Physics pigments is mentioned: [Pg.360]    [Pg.360]    [Pg.458]    [Pg.248]    [Pg.253]    [Pg.532]    [Pg.70]    [Pg.73]    [Pg.292]    [Pg.540]    [Pg.543]    [Pg.2]    [Pg.513]    [Pg.515]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.5]    [Pg.16]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.32]    [Pg.251]    [Pg.214]    [Pg.334]    [Pg.3]    [Pg.53]    [Pg.73]    [Pg.138]    [Pg.94]    [Pg.419]   
See also in sourсe #XX -- [ Pg.24 , Pg.134 , Pg.146 ]




SEARCH



© 2024 chempedia.info