Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties, measurement level measurements

Some of the compounds described in this chapter were studied for specific physical properties. Surface tension measurements with solutions of 9-16 in 0.01 M hydrochloric acid demonstrated that these zwitterionic X5Si-silicates are highly efficient surfactants.21 These compounds contain a polar (zwitterionic) hydrophilic moiety and a long lipophilic z-alkyl group. Increase of the n-alkyl chain length (9-15) was found to result in an increase of surface activity. The equilibrium surface tension vs concentration isotherms for 9 and 16 were analyzed quantitatively and the surface thermodynamics of these surfactants interpreted on the molecular level. Furthermore, preliminary studies demonstrated that aqueous solutions of 9-16 lead to a hydrophobizing of glass surfaces.21... [Pg.227]

The prospects of obtaining a detailed molecular-level understanding of heterogeneous catalysts would appear to be best for solid acids (1). Catalysis by solid acids often involves an appreciable concentration of reasonably uniform sites and restricted roles for defect structures. Furthermore, the great number of reaction studies, physical property measurements, and spectroscopic studies of solid acids provides a background (2-4) for the design and evaluation of further experimental and theoretical work. [Pg.115]

In tile next section we cover the major types of measurement devices used in the process industries, principally the big five measurements temperature, flow rate, pressure, level, and composition, along with online physical property measurement techniques. Table 8-8 summarizes the different options under each of the principal measurements. [Pg.56]

Determination of Important Parameters in Surfactant Design. Recent work (Chapters 8 and 9) demonstrates the utility of correlating test results with surfactant structures. But as the complexities of pore level mechanisms, dispersion properties, and fluid behavior become better understood, it is also becoming increasingly clear that a variety of physical property measurements will be required for advanced surfactant design. Many of these measurements will be needed at pressures (ca. 10 MPa) that are characteristic of gas-flood conditions. [Pg.23]

Detector Response - The detector response can be defined in two ways either as detector output per unit change in concentration of a specified solute or as the detector output per unit change in the physical property measured by the detector (e.g. refractive index). In the former ease the units of measurement will be in mV/g/ml. The detector response has been given the symbol Rq. In conjunction with the detector noise level, it allows the detector sensitivity, or minimum detectable concentration to be calculated. [Pg.44]

Spicer, C. W. 2002. Hazardous Air Pollutant Handbook Measurements, Properties, andFate in Ambient Air. Boca Raton, FL Lewis Publishers. This work describes the 188 substances designated as hazardous air pollutants (HAPs) under the Clean Air Act Amendments of 1990. Selected chemical and physical properties, measurement methods in ambient air, mean and range of ambient levels reported in the literature, and reaction mechanisms are covered for each substance. [Pg.292]

Some studies (6) have been carried out to measure distribution of soHds in mixing tanks. Local soHds concentrations at various heights are measured at different impeller speeds. Typical data (Fig. 16) demonstrate that very high mixer speeds are needed to raise the soHds to high levels. At low levels, soHds concentration can exceed the average concentration at low mixer speeds. These soHds distributions depend on the impeller diameter, particle size, and physical properties. [Pg.429]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

Process Measurements. The most commonly measured process variables are pressures, flows, levels, and temperatures (see Flow LffiASURELffiNT Liquid-levell asurel nt PressureLffiASURELffiNT Temperaturel asurel nt). When appropriate, other physical properties, chemical properties, and chemical compositions are also measured. The selection of the proper instmmentation for a particular appHcation is dependent on factors such as the type and nature of the fluid or soHd involved relevant process conditions rangeabiHty, accuracy, and repeatabiHty requited response time installed cost and maintainabiHty and reHabiHty. Various handbooks are available that can assist in selecting sensors (qv) for particular appHcations (14—16). [Pg.65]

Calcium has a face-centered cubic crystal stmcture (a = 0.5582 nm) at room temperature but transforms into a body-centered cubic (a = 0.4477 nm) form at 428 2° C (3). Some of the more important physical properties of calcium are given in Table 1. For additional physical properties, see references 7—12. Measurements of the physical properties of calcium are usually somewhat uncertain owing to the effects that small levels of impurities can exert. [Pg.399]

The chemical and physical properties of cellulose depend ia large measure on the spatial arrangements of the molecules. Therefore, cellulose stmctures have been studied iatensively, and the resulting information has been important ia helping to understand many other polymers. Despite the extent of work, however, there are stiU many controversies on the most important details. The source of the cellulose and its history of treatment both affect the stmcture at several levels. Much of the iadustrial processiag to which cellulose is subjected is iatended to alter the stmcture at various levels ia order to obtain desired properties. [Pg.239]

Detector Sensitivity or the Minimum Detectable Concentration has been defined as the minimum concentration of an eluted solute that can be differentiated unambiguously from the noise. The ratio of the signal to the noise for a peak that is considered decisively identifiable has been arbitrarily chosen to be two. This ratio originated from electronic theory and has been transposed to LC. Nevertheless, the ratio is realistic and any peak having a signal to noise ratio of less than two is seriously obscured by the noise. Thus, the minimum detectable concentration is that concentration that provides a signal equivalent to twice the noise level. Unfortunately, the concentration that will provide a signal equivalent to twice the noise level will usually depend on the physical properties of the solute used for measurement. Consequently, the detector sensitivity, or minimum detectable concentration, must be quoted in conjunction with the solute that is used for measurement. [Pg.164]

Confirmation of identity of nitrosamines via an independent detection system is desirable since a higher level of confidence is achieved if a different physical property or structural characteristic is measured. Mass spectrometry (MS) has been used... [Pg.332]

The most difficult problem of risk evaluation linked to chemicals will be discussed in this Part. This is primarily a medical problem, which therefore comes within the competence of the company medical officer and epidemiologists, but neverthel need not only be dealt with by them. The person in charge of safety control in a place where chemicals are handled also has to tackle this problem. This person will have to take into account the level of toxicity risk of a substance. This will determine the constraint level of the measures to be taken, its favoured means of penetration, which depends on the activity, and its penetration properties specific to the organism. The physical properties of the substance (which will determine the nature of the precautions to be taken) and also the values of toxicity parameters have to be taken into account. He has to check the container labelling and know how to interpret and explain the toxicity instructions on this labelling. [Pg.125]

The properties of ethylene-vinyl acetate copolymers vary widely with their ester content. At the lowest levels of vinyl acetate, they have physical properties that are similar to those of low density polyethylene. As the comonomer content increases, the material becomes less crystalline and more elastic. Copolymers made with the highest comonomer levels contain no measurable crystallinity. The resulting products are tough, flexible, and clear. The ester... [Pg.298]

At present, most PET scanners can acquire in both a two-dimensional as well as a three-dimensional mode, whereas SPECT cameras measure in a three-dimensional mode. The physical property of the dual-positron gamma-rays emission lends itself to mathematical reconstruction algorithms to produce three-dimensional images in which the calculations are much closer to exact theoretical ones than those of SPECT. This is, in part, due to the two-photon as opposed to single-photon approach. PET can now achieve resolutions, for example in animal-dedicated scanners, in the order of 1 or 2 mm. The resolution is inherently limited theoretically only by the mean free path or distance in which the positron travels before it annihilates with an electron, e.g. those in biological water 2-8 mm. SPECT, although achieving millimeter resolution with the appropriate instrumentation, cannot quite achieve these levels. [Pg.953]

The most common supervision parameter is temperature, but pressure is a possible choice as well. Several other variables, such as level, pH, or physical property changes, can also be chosen since they are easily measurable, but these characteristics are usually important for purposes other than identification of thermal hazards. The temperature criterion method depends strongly on the knowledge of the process and is, therefore, generally not suitable for detection of unexpected dangers. [Pg.165]

Although much less so than pyrrole polymers, indole polymers are beginning to be synthesized and studied as new materials. Electropolymerized films of indole-5-carboxylic acid are well-suited for the fabrication of micro pH sensors and they have been used to measure ascorbate and NADH levels. The three novel pyrroloindoles shown have been electrochemically polymerized, and the polymeric pyrrolocarbazole has similar physical properties to polyaniline. [Pg.75]

Matter can be defined as something that has mass and occupies space. If something occupies space, it has volume. Therefore, matter may be defined as any substance that has density. As an intrinsic physical property of matter, density can be used to help identify and differentiate substances. The method that is used to determine the density depends on the substance being measured. Is it a solid, liquid, or gas If it is a solid, is it regularly shaped Is it porous What level of precision is required ... [Pg.432]

Excess electrons can be introduced into liquids by absorption of high-energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron s chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields, and energy levels. [Pg.175]


See other pages where Physical properties, measurement level measurements is mentioned: [Pg.27]    [Pg.16]    [Pg.159]    [Pg.99]    [Pg.44]    [Pg.114]    [Pg.44]    [Pg.132]    [Pg.139]    [Pg.234]    [Pg.215]    [Pg.151]    [Pg.60]    [Pg.341]    [Pg.444]    [Pg.187]    [Pg.403]    [Pg.442]    [Pg.565]    [Pg.4]    [Pg.144]    [Pg.251]    [Pg.329]    [Pg.154]    [Pg.499]    [Pg.122]    [Pg.138]   
See also in sourсe #XX -- [ Pg.1537 ]




SEARCH



Level measurements

Leveling properties

Physical measurements

Physics Measurements

Properties measured

Property levels

© 2024 chempedia.info