Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoric acid fuel cells electrolyte

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

In a simple version of a fuel cell, a fuel such as hydrogen gas is passed over a platinum electrode, oxygen is passed over the other, similar electrode, and the electrolyte is aqueous potassium hydroxide. A porous membrane separates the two electrode compartments. Many varieties of fuel cells are possible, and in some the electrolyte is a solid polymer membrane or a ceramic (see Section 14.22). Three of the most promising fuel cells are the alkali fuel cell, the phosphoric acid fuel cell, and the methanol fuel cell. [Pg.639]

If an acid electrolyte is used, water is produced only at the cathode. An example is the phosphoric acid fuel cell ... [Pg.639]

Medium-temperature phosphoric acid fuel cells (PAFCs). The electrolyte is 85 to 95% phosphoric acid the working temperatures are 180 to 200°C. Such systems were used to build numerous autonomous power plants with an output of up to about 250 kW, and even some with an output of up to 4 MW, in the United States, Japan, and other countries. [Pg.362]

Phosphoric acid fuel cell (PAFC) Poison <0.5% olefins n.i. n.i. Poison <0.2 mol% (NH4)3P04 in electrolyte Poison <4 ppm73 Poison <4 ppm73... [Pg.207]

Phosphoric acid fuel cells use phosphoric acid as an electrolyte and have an OT of 190 to 210°C. [Pg.302]

This survey focuses on recent developments in catalysts for phosphoric acid fuel cells (PAFC), proton-exchange membrane fuel cells (PEMFC), and the direct methanol fuel cell (DMFC). In PAFC, operating at 160-220°C, orthophosphoric acid is used as the electrolyte, the anode catalyst is Pt and the cathode can be a bimetallic system like Pt/Cr/Co. For this purpose, a bimetallic colloidal precursor of the composition Pt50Co30Cr20 (size 3.8 nm) was prepared by the co-reduction of the corresponding metal salts [184-186], From XRD analysis, the bimetallic particles were found alloyed in an ordered fct-structure. The elecbocatalytic performance in a standard half-cell was compared with an industrial standard catalyst (bimetallic crystallites of 5.7 nm size) manufactured by co-precipitation and subsequent annealing to 900°C. The advantage of the bimetallic colloid catalysts lies in its improved durability, which is essential for PAFC applicabons. After 22 h it was found that the potential had decayed by less than 10 mV [187],... [Pg.84]

PAFC PEMFC PFC PGM PHEV PISI PM POX ppm PPP Phosphoric-acid fuel cell Proton-exchange-membrane fuel cell Polymer-electrolyte membrane Perfluorocarbons Platinum-group metals Plug-in hybrid-electric vehicle Port-injection spark ignition Particulate matter Partial oxidation Parts per million Purchasing power parity... [Pg.667]

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. [Pg.14]

Fuel cells are typically classified by the type of electrolyte. Apart from certain specialty types, the five major types of fuel cells are alkaline fuel cell (AFC), polymer electrolyte fuel cell (PEMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), and solid oxide fuel cell (SOFC). [Pg.25]

The beginning of modeling of polymer-electrolyte fuel cells can actually be traced back to phosphoric-acid fuel cells. These systems are very similar in terms of their porous-electrode nature, with only the electrolyte being different, namely, a liquid. Giner and Hunter and Cutlip and co-workers proposed the first such models. These models account for diffusion and reaction in the gas-diffusion electrodes. These processes were also examined later with porous-electrode theory. While the phosphoric-acid fuel-cell models became more refined, polymer-electrolyte-membrane fuel cells began getting much more attention, especially experimentally. [Pg.442]

The final 0-D equation presented here stems from incorporating the gas-pressure dependences directly instead of through a limiting current density, which normally only considers oxygen effects. This equation was proposed by Newmanfor phosphoric-acid fuel cells and predates the above polymer—electrolyte fuel-cell expressions. It has the form... [Pg.449]

The earliest models of fuel-cell catalyst layers are microscopic, single-pore models, because these models are amenable to analytic solutions. The original models were done for phosphoric-acid fuel cells. In these systems, the catalyst layer contains Teflon-coated pores for gas diffusion, with the rest of the electrode being flooded with the liquid electrolyte. The single-pore models, like all microscopic models, require a somewhat detailed microstructure of the layers. Hence, effective values for such parameters as diffusivity and conductivity are not used, since they involve averaging over the microstructure. [Pg.464]

Phosphoric acid fuel cell (PAFC) working at 180-200 °C vfith a porous matrix of PTFE-bonded silicon carbide impregnated with phosphoric acid as electrolyte, conducting by the H cation. This medium-temperature fuel cell is now commercialized by ONSI (USA), mainly for stationary applications. [Pg.17]

Phosphoric acid fuel cells (PAFC) use liquid phosphoric acid as an electrolyte - the acid is contained in a Teflon-bonded silicon carbide matrix - and porous carbon electrodes containing a platinum catalyst. The PAFC is considered the "first generation" of modern fuel cells. It is one of the most mature cell types, the first to be used commercially, and features the most proven track record in terms of commercial applications with over 200 units currently in use. This type of fuel cell is typically used for stationary power generation, but some PAFCs have been used to power large vehicles such as city buses. [Pg.25]

Phosphoric acid fuel cell (PAFC)—Phosphoric acid electrolyte with platinum catalyst. It can use hydrocarbon fuel and is suited for stationary applications. It can generate both electricity and steam. As many as 200 units in sizes ranging from 200 kW to 1 mW are in operation. [Pg.67]

Note PAFC phosphoric acid fuel cell PEMFC proton exchange membrane fuel cell/polymer electrolyte membrane fuel cell MBFC microbiological fuel cell DMFC direct methanol conversion fuel cell AFC alkaline fuel cell MCFC molten carbonate fuel cell SOFC solid oxide fuel cell ZAFC zinc air fuel cell. [Pg.71]

Phosphoric acid fuel cells, as its name says, use phosphoric acid as the electrolyte—Grove s first fuel cell used sulfuric acid. They are the... [Pg.38]

Phosphoric acid fuel cells (PAFC) with concentrated H3P04 (in silicon carbide matrices) electrolyte, which transports H+ cations, generated at the anode, to an ambient-air-exposed cathode, where they are electro-oxidised to water at moderate temperatures. [Pg.52]

Alkaline fuel cells (AFC) — The first practical -+fuel cell (FC) was introduced by -> Bacon [i]. This was an alkaline fuel cell using a nickel anode, a nickel oxide cathode, and an alkaline aqueous electrolyte solution. The alkaline fuel cell (AFC) is classified among the low-temperature FCs. As such, it is advantageous over the protonic fuel cells, namely the -> polymer-electrolyte-membrane fuel cells (PEM) and the - phosphoric acid fuel cells, which require a large amount of platinum, making them too expensive. The fast oxygen reduction kinetics and the non-platinum cathode catalyst make the alkaline cell attractive. [Pg.21]

Phosphoric-acid fuel cell (PAFC) — In PAFCs the -> electrolyte consists of concentrated phosphoric acid (85-100%) retained in a silicon carbide matrix while the -> porous electrodes contain a mixture of Pt electrocatalyst (or its alloys) (-> electrocatalysis) supported on -> carbon black and a polymeric binder forming an integral structure. A porous carbon paper substrate serves as a structural support for the electrocatalyst layer and as the current collector. The operating temperature is maintained between 150 to 220 °C. At lower temperatures, phosphoric acid tends to be a poor ionic conductor and poisoning of the electrocatalyst at the anode by CO becomes severe. [Pg.494]


See other pages where Phosphoric acid fuel cells electrolyte is mentioned: [Pg.577]    [Pg.173]    [Pg.535]    [Pg.299]    [Pg.160]    [Pg.18]    [Pg.14]    [Pg.47]    [Pg.230]    [Pg.398]    [Pg.416]    [Pg.445]    [Pg.464]    [Pg.28]    [Pg.23]    [Pg.420]    [Pg.173]    [Pg.287]    [Pg.88]    [Pg.40]    [Pg.334]    [Pg.166]    [Pg.286]    [Pg.432]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



Acidic fuel cell

Electrolyte acidity

Electrolytes cells

Electrolytes fuel cell

Electrolytes, acid fuel cells

Electrolytic cell

Fuel cells phosphoric acid

Fuel phosphoric acid

Phosphoric acid cells

Phosphoric acid electrolyte fuel

Phosphoric acid fuel cell electrolyte management

Phosphoric acid fuel cell electrolyte matrix

Phosphoric acid fuel cells electrode/electrolyte system

© 2024 chempedia.info