Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2.3.6- Trimethyl-5- phenol

Beilstein Handbook Reference) Benzene, 2-hydroxy-1,3,5-trimethyl- BRN 1859675 EINECS 208-419-2 HSDB 5677 2-Hydroxymesitylene 1-Hydroxy-2,4,6-trimethylbenzene Mesitol Mesityl alcohol NSC 5353 Phenol, 2,4,6-trimethyl- 1,3,5-Trimethylphenol 2,4,6-Trimethylofenol 2,4,6-Trimethylphenol 2,4,6-Trimetylofenol. Needles mp = 73° bp 220° very soluble in EtOH, EtzO. [Pg.389]

Phenol, 2,4-dimethyl- 2,4-xylenol Phenol, 3,5-dimethyl- 3,5-xylenol Phenol, 2-dimethoxy- guaiacol Phenol, 2-methyl- o-cresol Phenol, 3-methyl- m-cresol Phenol, 4-methyl- /7-cresol Phenol. 2,4,6-trimethyl- mesitol ... [Pg.493]

Cinnamic acid, 4-hydroxy- coumaric acid 53. Phenol, 2,4,6-trimethyl- mesitol... [Pg.494]

The above is a general procedure for preparing trialkyl orthophosphates. Similar yields are obtained for trimethyl phosphate, b.p. 62°/5 mm. triethyl phosphate, b.p. 75-5°/5 mm. tri-n-propyl phosphate, b.p. 107-5°/5 mm. tri-Mo-propyl phosphate, b.p. 83-5°/5 mm. tri-wo-butyl phosphate, b.p. 117°/5-5 mm. and tri- -amyl phosphate, b.p. 167-5°/5 mm. The alkyl phosphates are excellent alkylating agents for primary aromatic amines (see Section IV,41) they can also be ua for alkylating phenols (compare Sections IV,104-105). Trimethyl phosphate also finds application as a methylating agent for aliphatie alcohols (compare Section 111,58). [Pg.304]

Long-chain esters of pentaerythritol have been prepared by a variety of methods. The tetranonanoate is made by treatment of methyl nonanoate [7289-51-2] and pentaerythritol at elevated temperatures using sodium phenoxide alone, or titanium tetrapropoxide in xylene (12). PhenoHc esters having good antioxidant activity have been synthesized by reaction of phenols or long-chain aUphatic acids and pentaerythritol or trimethyl olpropane (13). [Pg.464]

There was significant interest in developing commercial processes based on phenolic resins in the 1890-1910 era. By this time, cellulose nitrate, vulcanized rubber, and viscose rayon had all found places in commerce [24]. Smith patented processes for manufacture of commercially useful molded articles from phenolic in 1899-1900 [2,25-28]. His products were made with phenol, paraldehyde (2,4,6-trimethyl-1,3,5-trioxane) or parafonnaldehyde, and additives in the presence of HCl at elevated temperatures. [Pg.870]

A proposed mechanism for silyl ether displacement is shown in Scheme 6.14. In the first step, the fluoride anion converts the trimethyl siloxy group into a phe-nolate salt. In the following step, the phenolate anion attacks the activated fluoro monomer to generate an ether bond. The amount of catalyst required is about 0.1-0.3 mol%. Catalyst type and concentration are crucial for this reaction. [Pg.340]

Sulfonic esters are most frequently prepared by treatment of the corresponding halides with alcohols in the presence of a base. The method is much used for the conversion of alcohols to tosylates, brosylates, and similar sulfonic esters. Both R and R may be alkyl or aryl. The base is often pyridine, which functions as a nucleophilic catalyst, as in the similar alcoholysis of carboxylic acyl halides (10-21). Primary alcohols react the most rapidly, and it is often possible to sulfonate selectively a primary OH group in a molecule that also contains secondary or tertiary OH groups. The reaction with sulfonamides has been much less frequently used and is limited to N,N-disubstituted sulfonamides that is, R" may not be hydrogen. However, within these limits it is a useful reaction. The nucleophile in this case is actually R 0 . However, R" may be hydrogen (as well as alkyl) if the nucleophile is a phenol, so that the product is RS020Ar. Acidic catalysts are used in this case. Sulfonic acids have been converted directly to sulfonates by treatment with triethyl or trimethyl orthoformate HC(OR)3, without catalyst or solvent and with a trialkyl phosphite P(OR)3. ... [Pg.576]

RN 99732-49-7 MF C4oHsoNO,P C,6Hj40 [C,4H220 C2H4O CHzOlx MW unspecified CN (/ )-A(,A/,Al-trimethyl-10-oxo-7-[( 1 -oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1 -aminium-4-oxide inner salt, mixt. with formaldehyde polymer with oxirane and 4-(l, 1,3,3-tetramethylbutyl)phenol and 1-hexadecanol... [Pg.543]

Diaikanol aminoalkyl phenols as admixtures enhance the strength [675]. The additives are useful in very small amounts and do not affect the initial properties of the fluid. The strength additive does not cause set acceleration or early set strength enhancement but provides enhanced compressive strength of the cement in later stages. Addition of small amounts of potassium ferricyanide and nitrile-trimethyl phosphonic acid promotes the formation of complex compounds and thus increases the strength of cement rock [1771]. [Pg.146]

Ethoxylated methylcarboxylates Propoxyethoxy glyceryl sulfonate Alkylpropoxyethoxy sulfate as surfactant, xanthan, and a copolymer of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate Carboxymethylated ethoxylated surfactants (CME) Polyethylene oxide (PEG) as a sacrificial adsorbate Polyethylene glycols, propoxylated/ethoxylated alkyl sulfates Mixtures of sulfonates and nonionic alcohols Combination of lignosulfonates and fatty amines Alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride Anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonylphenol (NP-15), and nonionic octaethylene glycol N-dodecyl ether Dimethylalkylamine oxides as cosurfactants and viscosifiers (N-Dodecyl)trimethylammonium bromide Petrochemical sulfonate and propane sulfonate of an ethoxylated alcohol or phenol Petrochemical sulfonate and a-olefin sulfonate... [Pg.198]

Plasticiser/oil in rubber is usually determined by solvent extraction (ISO 1407) and FTIR identification [57] TGA can usually provide good quantifications of plasticiser contents. Antidegradants in rubber compounds may be determined by HS-GC-MS for volatile species (e.g. BHT, IPPD), but usually solvent extraction is required, followed by GC-MS, HPLC, UV or DP-MS analysis. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out. The determination of antioxidants in rubbers by means of HPLC and TLC has been reviewed [58], The TLC technique for antidegradants in rubbers is described in ASTM D 3156 and ISO 4645.2 (1984). Direct probe EIMS was also used to analyse antioxidants (hindered phenols and aromatic amines) in rubber extracts [59]. ISO 11089 (1997) deals with the determination of /V-phenyl-/9-naphthylamine and poly-2,2,4-trimethyl-1,2-dihydroquinoline (TMDQ) as well as other generic types of antiozonants such as IV-alkyl-AL-phenyl-p-phenylenediamines (e.g. IPPD and 6PPD) and A-aryl-AL-aryl-p-phenylenediamines (e.g. DPPD), by means of HPLC. [Pg.35]

In an acetone extract from a neoprene/SBR hose compound, Lattimer et al. [92] distinguished dioctylph-thalate (m/z 390), di(r-octyl)diphenylamine (m/z 393), 1,3,5-tris(3,5-di-f-butyl-4-hydroxybenzyl)-isocyanurate m/z 783), hydrocarbon oil and a paraffin wax (numerous molecular ions in the m/z range of 200-500) by means of FD-MS. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out (Chapter 2). The method of Dinsmore and Smith [257], or a modification thereof, is normally used. Mass spectrometry (and other analytical techniques) is then used to characterise the various rubber fractions. The mass-spectral identification of numerous antioxidants (hindered phenols and aromatic amines, e.g. phenyl-/ -naphthyl-amine, 6-dodecyl-2,2,4-trimethyl-l,2-dihydroquinoline, butylated bisphenol-A, HPPD, poly-TMDQ, di-(t-octyl)diphenylamine) in rubber extracts by means of direct probe EI-MS with programmed heating, has been reported [252]. The main problem reported consisted of the numerous ions arising from hydrocarbon oil in the recipe. In older work, mass spectrometry has been used to qualitatively identify volatile AOs in sheet samples of SBR and rubber-type vulcanisates after extraction of the polymer with acetone [51,246]. [Pg.411]

Sonawane et al. [90] investigated the affect of ultrasound and nanoclay for the adsorption of phenol. Three types of nanoclay tetrabutyl ammonium chloride (TBAC), N-acetyl-N,N,N trimethyl ammonium bromide (CTAB) and hexadecyl trimethyl ammonium chloride (HDTMA), modified under sonication, were synthesized which showed healthier adsorption of phenol within only 10 min in waste water. The interlamellar spacing of all the three clay increased due to incorporation of long chain quaternary salts under cavitational effect. [Pg.293]

Trimethyl phenol 1-Naphthol p-Phenylphenol p-Methoxyphenol Hydroquinone... [Pg.291]

Owing to the fact that ethyl ethers are especially effective substrates for CYP1A1 [184], the probe possesses an ethyl group on the phenolic oxygen of the trimethyl lock. In vitro, fluorescence was manifested by CYP1A1 isozyme with Kcat/KM 8.8 x 103 M-1s 1 and KM 0.09 pM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodi-benzo-p-dioxin (TCDD), and its repression by the chemoprotectant resveratrol. [Pg.50]

Figure 11.11 Pyrogram of a paint sample collected from a decorative frame of the Universal Judgement by Bonamico Buffalmacco (fourteenth century, Monumental Cemetery of Pisa, Italy). Pyrolysis was performed with a microfurnace pyrolyser, at 600°C, in the presence of HMDS. 1, Benzene 2, ethyl acrylate 3, methyl methacrylate 4, acetic acid, trimethyl silyl ester 5, pyrrole 6, toluene 7, 2 methylpyrrole 8, 3 methylpyrrole 9, crotonic acid 10, ben zaldehyde 11, phenol 12, 2 methylphenol 13, 4 methylphenol 14, 2,4 dimethyl phenol 15, benzyl nitrile 16, 3 phenylpropionitrile 17, indole 18, phthalate 19, phthalate 20, ben zyl benzoate HMDS pyrolysis products [27]... Figure 11.11 Pyrogram of a paint sample collected from a decorative frame of the Universal Judgement by Bonamico Buffalmacco (fourteenth century, Monumental Cemetery of Pisa, Italy). Pyrolysis was performed with a microfurnace pyrolyser, at 600°C, in the presence of HMDS. 1, Benzene 2, ethyl acrylate 3, methyl methacrylate 4, acetic acid, trimethyl silyl ester 5, pyrrole 6, toluene 7, 2 methylpyrrole 8, 3 methylpyrrole 9, crotonic acid 10, ben zaldehyde 11, phenol 12, 2 methylphenol 13, 4 methylphenol 14, 2,4 dimethyl phenol 15, benzyl nitrile 16, 3 phenylpropionitrile 17, indole 18, phthalate 19, phthalate 20, ben zyl benzoate HMDS pyrolysis products [27]...
In this route a dihydroisoquinoline (58) is N alkylated with a highly functionalized o -bromoacetophenone (59) to give a quaternary salt (60), which is treated with base and cyclizes to a pyrroloisoquinoline (60). The pyrrole nucleus is then formylated under Vilsmeier-Haack conditions at position 5 and a proximate mesylated phenolic group is deprotected with base to yield a pen-tasubstituted pyrrole (61). Subsequent oxidative cyclization of this formylpyr-role produces the 5-lactone portion of lamellarin G trimethyl ether (36). This sequence allows for rapid and efficient analog synthesis as well as the synthesis of the natural product. [Pg.82]

The /3-lactone dimer of dimethylketene reacts with alcohols, phenols, mercaptans, and amines to form derivatives of 2,2,4-trimethylvaleric acid.3 In this respect it is a more powerful acylating reagent than the normal dimer, tetramethyl-l,3-cyclo-butanedione. The preparation of 2,2,4-trimethyl-3-oxovaler-anilide, for example, is accomplished easily with the lactone dimer, but is extremely difficult with the normal dimer.8... [Pg.38]

This procedure is based on the method of Smith, Opie, Waw-zonek, and Prichard3 for the preparation of 2,3,6-trimethyl-phenol. 3-Hydroxypyrene has been prepared by fusion of pyrene-3-sulfonic acid with sodium hydroxide 4 and by desul-fonation of 3-hydroxypyrene-5,8,10-trisulfonic acid with hot, dilute sulfuric acid.5... [Pg.49]

Five hundred forty-five grams (4.00 moles) of 2,4,6-trimethyl-phenol (Note 1) is placed in a 1-1. three-necked flask fitted with mechanical stirrer, thermometer, 90-cm. Vigreux column, and dropping funnel (not of the pressure-equalizing variety). The... [Pg.91]

It is now known1 that trialkyl phosphates will indeed alkylate phenols. The idea has been extended2 to the production of methyl ethers from alcohols and trimethyl phosphate, and of a butyl ether according to the equation... [Pg.114]


See other pages where 2.3.6- Trimethyl-5- phenol is mentioned: [Pg.543]    [Pg.1708]    [Pg.323]    [Pg.229]    [Pg.535]    [Pg.1704]    [Pg.394]    [Pg.68]    [Pg.189]    [Pg.146]    [Pg.53]    [Pg.224]    [Pg.325]    [Pg.354]    [Pg.355]    [Pg.374]    [Pg.462]    [Pg.176]    [Pg.176]    [Pg.795]    [Pg.1309]    [Pg.2451]    [Pg.8]    [Pg.12]    [Pg.19]    [Pg.175]    [Pg.146]    [Pg.50]    [Pg.851]    [Pg.271]    [Pg.187]    [Pg.264]    [Pg.374]   
See also in sourсe #XX -- [ Pg.11 , Pg.29 , Pg.162 ]




SEARCH



Trimethyl Phenol (2,3,6-TMP)

© 2024 chempedia.info