Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol formaldehyde epoxy

Laminating resins. CNSL resins are added to laminates based on phenol-formaldehyde, epoxy, etc. to reduce brittleness and to improve flexibility of the product. The resins also exhibit better age hardening and improved bonding to the substrate [133,134,137,168]. [Pg.424]

A number of rubbery materials have been added to lightly crosslinked epoxies in order to make them more fiacture resistant. These include polybutadiene/aciylonitrile elastomer of phenol-formaldehyde epoxies, carboxy terminated and amine terminated polybutadiene/aciylonitrile resins, terpolymers, siloxanes, and aciylic, as well as other types of rubbers. [Pg.505]

Organic coatings include phenol formaldehyde, epoxy, polyacryl and polyacryl acid resins, polyamide, polyolefin, bitumen and rubber. The required properties of lining materials in combination with cathodic protection are given in Section 5.2.1. In addition, adequate resistance to water vapor diffusion is required (see Section 5.2.2). These properties are discussed in the basic standard for internal cathodic protection [2], which also reports how these properties can be assured by testing with the aid of Ref. 3. It is convenient to limit the protection potential region to [7 5 = -0.8 V in the presence of resin coatings, which makes potential-controlled protection current equipment necessary. [Pg.443]

Spheres. HoUow spherical fillers have become extremely useflil for the plastics industry and others. A wide range of hoUow spherical fillers are currently available, including inorganic hoUow spheres made from glass, carbon, fly ash, alumina, and 2h conia and organic hoUow spheres made from epoxy, polystyrene, urea—formaldehyde, and phenol—formaldehyde. Although phenol—formaldehyde hoUow spheres are not the largest-volume product, they serve in some important appHcations and show potential for future use. [Pg.308]

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

Phenol, in its various purity grades, is used for phenol—formaldehyde resins to bond constmction materials like plywood and composition board (40% of the phenol produced), for the bisphenol A employed in making epoxy resins (qv) and polycarbonate (qv) (30%), and for caprolactam (qv), the starting material for nylon-6 (20%). Minor amounts ate used for alkylphenols (qv) and pharmaceuticals (10). [Pg.364]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]

Commonly accepted practice restricts the term to plastics that serve engineering purposes and can be processed and reprocessed by injection and extmsion methods. This excludes the so-called specialty plastics, eg, fluorocarbon polymers and infusible film products such as Kapton and Updex polyimide film, and thermosets including phenoHcs, epoxies, urea—formaldehydes, and sdicones, some of which have been termed engineering plastics by other authors (4) (see Elastol rs, synthetic-fluorocarbon elastol rs Eluorine compounds, organic-tdtrafluoroethylenecopolyt rs with ethylene Phenolic resins Epoxy resins Amino resins and plastics). [Pg.261]

This includes wire enamels on a base of polyvinyl formal, polyurethane or epoxy resins as well as moulding powder plastics on phenol-formaldehyde and similar binders, with cellulose fillers, laminated plastics on paper and cotton cloth base, triacetate cellulose films, films and fibres of polyethylene terephthalate. [Pg.221]

A hard carbon with high capacity can be made from epoxy novolac resin [12]. The epoxy resins used cost about US 2.50 per pound and give pyrolysis yields between 20 and 30%. However, it is well known that phenolic (or phenol-formaldehyde) resins can be pyrolyzed to give hard carbons with a yield of over 50% [42]. In addition, these resins cost about USSl.OO per pound. Phenolic resins therefore offer significant cost advantages over epoxy resins, so we... [Pg.375]

Carbon, hydrogen and possibly oxygen Resin and derivatives Natural drying oils Cellulose derivatives Alkyd resins Epoxy resins (uncured) Phenol-formaldehyde resins Polystyrene Acrylic resins Natural and synthetic rubbers Carbon monoxide Aldehydes (particularly formaldehyde, acrolein and unsaturated aldehydes) Carboxylic acids Phenols Unsaturated hydrocarbons Monomers, e.g. from polystyrene and acrylic resins... [Pg.138]

Nitrile rubber is compatible with phenol-formaldehyde resins, resorcinol-formaldehyde resins, vinyl chloride resins, alkyd resins, coumarone-indene resins, chlorinated rubber, epoxies and other resins, forming compositions which can be cured providing excellent adhesives of high strength, high oil resistance and high resilience. On the other hand, NBR adhesives are compatible with polar adherends such as fibres, textiles, paper and wood. Specific formulations of NBR adhesives can be found in [12]. [Pg.658]

A reaction vessel explosion at BASF s resins plant in Cincinnati (July 19, 1990) killed one and injured 71. The BASF facility manufactures acrylic, alkyd, epoxy, and phenol-formaldehyde resins used as can and paper-cup liner coatings. The explosion occurred when a flammable solvent used to clean a reaction vessel vented into the plant and ignited. The cleaning solvent that was not properly vented to a condenser and separator, blew a pressure seal, and fdled the 80-year-old building with a white vapor cloud. [Pg.258]

These intermediates are too small to be used alone, but need to be enlarged and modified to obtain compatibility with other resins. In the case of the phenol formaldehyde resins this is achieved by either using para-substituted phenols where the substituent contains at least four carbon atoms or by reacting the intermediate with the natural resin, rosin, and then esterifying with glycerol or pentaerythritol. These resins have a limited use in stoved epoxy finishes where colour is not an important factor. [Pg.677]

Zone 5 acrylic, diallyl phthalate, epoxy, phenol-formaldehyde, TP polyester, and polytetrafluoroethylene. [Pg.319]

Phenol-epoxy reaction. See also Epoxy-phenolic reaction entries tertiary amine-catalyzed, 412 triphenylphosphine-catalyzed, 412 Phenol-formaldehyde novolac resin, preparation of, 429... [Pg.592]

Phenol was originally recovered during the coking of coal, essentially being a by-product. Eventually, commercial routes were developed based on benzene (from coal or petroleum) for example, sulfonation of benzene to ben-zenesulfonic acid followed by reaction with water to phenol plus regenerated sulfuric acid. Phenol is used to make plastics (phenol-formaldehyde and epoxy resins) and textile fibers (nylon). Phenol is also used in solution as a general disinfectant for cleaning toilets, stables, floors, drains, etc. and is used both internally and externally as a disinfectant for animals. [Pg.87]

Synthetic resins Acrylic Alkyd. Chiorobenzols Chlorodiphenyls Chloro-naphthalenes Chlorophenols Cumaron Epoxies Melamine formaldehyde Phenol formaldehyde Polyesters Sulphonamide formaldehyde Urea formaldehyde Urethane Vinyl Others Enzymes derived from B. subtilis... [Pg.42]

Diglycidyl ether of bisphenol A (DGEBA, MW 340 Da) and 4,4 -dihydroxy-diphenylmethane (DHDPM, MW 200 Da) were analysed by SEC-MALS [784]. DGEBA and DHDPM are the basic oligomers of epoxy resins and phenol-formaldehyde condensates, respectively, which are widely used in the electronic and automotive industries. Excellent reproducibility ( 1 %) and good accuracy (better than 10%) were observed. SEC has also been used for the determination of mineral oil in extended elastomers [785] and in PS [178]. With heptane containing 0.05% isopropanol as the mobile phase, mineral oil is completely unretained and elutes before the solvent via SEC all other components in a PS extract are retained on silica and elute after the solvent peak. [Pg.263]

Chlorophenols Cumaron Epoxies Melamine formaldehyde Phenol formaldehyde Polyesters Others Enzymes derived from B. subtilis... [Pg.49]

Proppants are solid particles used to hold open the fracture after conclusion of the well treatment. Criteria to choose the economically most effective proppant for a given set of formation conditions have been discussed (7 6). While sand is the most commonly used proppant because of its low cost, resin-coated sand, sintered bauxite, and A O particles have also been used because of their greater compressive strength and resistance to dissolution at high temperature and pH (55). While epoxy resins are most commonly used, the use of other resins such as phenol-formaldehyde has been described. [Pg.17]

Epoxy resins (di-phenolic chains) are closely related to phenol formaldehydes and are widely used to make reinforced composites with glass or carbon reinforcing fibers. Their monomers are cross-linked at lower temperatures than phenolic formaldehydes. Typical hardnesses for them are Hv = 4.4kg/mm2 (Olivier, et al., 2008). [Pg.164]

Epoxy resin (Tufnol, Bakelite, Epophen) Styrene divinylbenzene ion exchange resins Reillex HPQ anion exchange resin Phenol/formaldehyde cation exchange resin Polyurethane Cellulose (as tissues)... [Pg.219]


See other pages where Phenol formaldehyde epoxy is mentioned: [Pg.77]    [Pg.60]    [Pg.80]    [Pg.77]    [Pg.60]    [Pg.80]    [Pg.378]    [Pg.495]    [Pg.489]    [Pg.485]    [Pg.189]    [Pg.6]    [Pg.427]    [Pg.341]    [Pg.432]    [Pg.10]    [Pg.17]    [Pg.82]    [Pg.338]    [Pg.20]    [Pg.108]    [Pg.108]   
See also in sourсe #XX -- [ Pg.505 ]




SEARCH



Epoxy-phenolic

Phenol formaldehyd

Phenol-Formaldehyde (Phenolics)

Phenol-formaldehyde

© 2024 chempedia.info