Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol classification

Synonyms PEG-60 nonyl phenyl ether POE (60) nonyl phenyl ether Polyoxyeth-ylene-60-nonyl phenol Classification Ethoxylated alkyl phenol Ionic Nature Nonionic... [Pg.2236]

CAS 1322-69-6 27193-28-8 EINECS/ELINCS 248-310-7 Synonyms Diisobutyl phenol OP Phenol, octyl Phenol. (1,1,3,3-tetramethylbutyl)- (Tetramethylbutyl) phenol (1,1,3,3-Tetramethylbutyl) phenol Classification Phenol Empirical C,4H220 Formula CjH,7CgH40H... [Pg.2251]

The imides, primaiy and secondary nitro compounds, oximes and sulphon amides of Solubility Group III are weakly acidic nitrogen compounds they cannot be titrated satisfactorily with a standard alkaU nor do they exhibit the reactions characteristic of phenols. The neutral nitrogen compounds of Solubility Group VII include tertiary nitro compounds amides (simple and substituted) derivatives of aldehydes and ketones (hydrazones, semlcarb-azones, ete.) nitriles nitroso, azo, hydrazo and other Intermediate reduction products of aromatic nitro compounds. All the above nitrogen compounds, and also the sulphonamides of Solubility Group VII, respond, with few exceptions, to the same classification reactions (reduction and hydrolysis) and hence will be considered together. [Pg.1074]

It is traditional to divide phenolics into two main categories. These are novolacs and resoles. This system of classification is consistent with the division of applications as well as the compositions and conditions of resin manufacture. Novolacs are used primarily in the molding industries and electronics applications. Resoles are used primarily as binders for other materials. [Pg.873]

Free phenol is a major concern in the manufacture of novolac resins. This is true for several reasons. The strongest drivers are probably EPA classification of phenol as a Hazardous Air Pollutant and worker safety concerns. However, free phenol also has significant technical effects on such parameters as melt flow characteristics. In this role, free phenol may undermine the desired effects of a molecular weight design by increasing flow beyond the desired point. Since free phenol is often variable, the effects on flow may also cause variation in product performance from batch to batch. Fig. 18 shows the effects of free phenol on the flow across a series of molecular weights. Free phenol contents between 1 and 10% are commonly seen. In recent years, much work has been aimed at reducing the free phenol. [Pg.925]

An excellent classification of this type of enzymes was that of Burton (2003). Because of their importance in polyphenol degradation, we have studied four enzymes closely related with the oxidation of phenolic compounds polyphenoloxidase, peroxidase, laccase, and lipoxygenase. [Pg.103]

The most characteristic reaction of butadiene catalyzed by palladium catalysts is the dimerization with incorporation of various nucleophiles [Eq. (11)]. The main product of this telomerization reaction is the 8-substituted 1,6-octadiene, 17. Also, 3-substituted 1,7-octadiene, 18, is formed as a minor product. So far, the following nucleophiles are known to react with butadiene to form corresponding telomers water, carboxylic acids, primary and secondary alcohols, phenols, ammonia, primary and secondary amines, enamines, active methylene compounds activated by two electron-attracting groups, and nitroalkanes. Some of these nucleophiles are known to react oxidatively with simple olefins in the presence of Pd2+ salts. Carbon monoxide and hydrosilanes also take part in the telomerization. The telomerization reactions are surveyed based on the classification by the nucleophiles. [Pg.151]

International, national, and state regulations and guidelines pertinent to human exposure to phenol are summarized in Table 7-1. The IARC classification for phenol is Group 3, not classifiable with regard to its carcinogenicity to humans (IARC 1989). [Pg.197]

The catch-all classification for other toxins falls in this group. Generally, these compounds are diverse and often chemically unrelated. As diverse as their chemical natures are, so are the diversity of their effects in mammals when ingested or when physical contact is made. Phenolics are one major component of this group, and are themselves very diverse. The definition of a phenolic is an alcohol or hydroxy group coupled to an aromatic ring. [Pg.60]

Arylsulfatase [EC 3.1.6.1 ], also known simply as sulfatase, catalyzes the hydrolysis of a phenol sulfate, thereby producing a phenol and sulfate. This enzyme classification represents a collection of enzymes with rather similar specificities. (1) Steryl-sulfatase [EC3.1.6.2],also referred to as arylsulfatase C and steroid sulfatase, catalyzes the hydrolysis of 3-j8-hydroxyandrost-5-en-17-one 3-sulfate to 3-j8-hydroxyandrost-5-en-17-one and sulfate. The enzyme utilizes other steryl sulfates as substrates. (2) Cere-broside-sulfatase [EC 3.1.6.8], or arylsulfatase A, catalyzes the hydrolysis of a cerebroside 3-sulfate to yield a cerebroside and sulfate. The enzyme will also hydrolyze the galactose 3-sulfate bond present in a number of lipids. In addition, the enzyme will also hydrolyze ascorbate 2-sulfate and other phenol sulfates. [Pg.67]

It should not be taken for granted that all polymers that are defined as condensation polymers by Carothers classification will also be so defined by a consideration of the polymer chain structure. Some condensation polymers do not contain functional groups such as ester or amide in the polymer chain. An example is the phenol-formaldehyde polymers produced by the reaction of phenol (or substituted phenols) with formaldehyde... [Pg.6]

Proanthocyanidins and Procyanidins - In a classical study Bate-Smith ( ) used the patterns of distribution of the three principal classes of phenolic metabolites, which are found in the leaves of plants, as a basis for classification. The biosynthesis of these phenols - (i) proanthocyanidins (ii) glycosylated flavonols and (iii) hydroxycinnamoyl esters - is believed to be associated with the development in plants of the capacity to synthesise the structural polymer lignin by the diversion from protein synthesis of the amino-acids L-phenylalanine and L-tyro-sine. Vascular plants thus employ one or more of the p-hydroxy-cinnarayl alcohols (2,3, and 4), which are derived by enzymic reduction (NADH) of the coenzyme A esters of the corresponding hydroxycinnamic acids, as precursors to lignin. The same coenzyme A esters also form the points of biosynthetic departure for the three groups of phenolic metabolites (i, ii, iii), Figure 1. [Pg.124]

Abrasives - [ALUMINUMCOMPOUNDS - ALUMINIUMOXIDE(ALUMINA) - CALCINED,TABULAR, AND ALUMINATE CEMENTS] (Vol 2) -m automobile polishes [POLISITES] (Vol 19) -for dental materials [DENTAL MATERIALS] (Vol 7) -for enameling [ENAMELS, PORCELAIN OR VITREOUS] (Vol 9) -nitrides as [NITRIDES] (Vol 17) -particle shape classification m [SIZE MEASUREMENT OF PARTICLES] (Vol 22) -phenolic resins PHENOLIC RESINS] (Vol 18) -PVB m [VINYL POLYMERS - VINYL ACETAL POLYMERS] (Vol 24) -silicon carbide m [CARBIDES - SILICONCARBIDE] (Vol 4) -standards and specification [MATERIALS STANDARDS AND SPECIFICATIONS] (Vol 16) -use m cosmetics [COSMETICS] (Vol 7) -use m electroplating cleaning pLECTROPLATING] (Vol 9)... [Pg.2]

Phenolic compounds are of interest due to their potential contribution to the taste (astrin-gency, bitterness, and sourness) and formation of off-flavor in foods, including tea, coffee, and various fruit juices, during storage. Their influence on the appearance of food products, such as haze formation and discoloration associated with browning in apple and grape products, is also significant. Furthermore, analysis of these phenolic compounds can permit taxonomic classification of the source of foods. The importance of each phenolic compound and its association with the quality of various foods is described further in Sec. IV, on food applications. [Pg.777]

For phenolics in fruit by-products such as apple seed, peel, cortex, and pomace, an HPLC method was also utilized. Apple waste is considered a potential source of specialty chemicals (58,62), and its quantitative polyphenol profile may be useful in apple cultivars for classification and identification. Chlorogenic acid and coumaroylquinic acids and phloridzin are known to be major phenolics in apple juice (53). However, in contrast to apple polyphenolics, HPLC with a 70% aqueous acetone extract of apple seeds showed that phloridzin alone accounts for ca. 75% of the total apple seed polyphenolics (62). Besides phloridzin, 13 other phenolics were identified by gradient HPLC/PDA on LiChrospher 100 RP-18 from apple seed (62). The HPLC technique was also able to provide polyphenol profiles in the peel and cortex of the apple to be used to characterize apple cultivars by multivariate statistical techniques (63). Phenolic compounds in the epidermis zone, parenchyma zone, core zone, and seeds of French cider apple varieties are also determined by HPLC (56). Three successive solvent extractions (hexane, methanol, aqueous acetone), binary HPLC gradient using (a) aqueous acetic acid, 2.5%, v/v, and (b) acetonitrile fol-... [Pg.792]

Flame-Resistant Grades. Grade FR-1, paper-based laminates with a phenolic resin binder, are similar in all properties to Grade XP, but so formulated to have at least a UL94 V-l classification when tested according to UL94. [Pg.537]

An alternative classification has been used by Swain and Bate-Smith (1962). They grouped the phenols in common and less common categories. Ribereau-Gayon (1972) grouped the phenols into three families as follows ... [Pg.2]


See other pages where Phenol classification is mentioned: [Pg.290]    [Pg.880]    [Pg.207]    [Pg.413]    [Pg.570]    [Pg.1074]    [Pg.480]    [Pg.121]    [Pg.160]    [Pg.181]    [Pg.740]    [Pg.197]    [Pg.438]    [Pg.275]    [Pg.277]    [Pg.62]    [Pg.63]    [Pg.66]    [Pg.208]    [Pg.195]    [Pg.321]    [Pg.553]    [Pg.865]    [Pg.61]    [Pg.1074]    [Pg.74]    [Pg.34]    [Pg.945]    [Pg.786]    [Pg.788]    [Pg.1]    [Pg.2]   
See also in sourсe #XX -- [ Pg.426 ]




SEARCH



1 Classification reactions Phenols

Phenol peels classification

Phenolic acids classification

Phenolic compounds, classification

Phenolic compounds, classification flavonoids

Phenolic resin classifications

Phenolic resin classifications reactive

Phenols classification tests

© 2024 chempedia.info