Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petroleum intermediates

Distillates (petroleum), intermediate catalytic cracked, thermally degraded... [Pg.122]

Figure 6. T-STAR three-phase ebullated bed for hydrotreating petroleum intermediates. (From Clausen et al, 1992.)... Figure 6. T-STAR three-phase ebullated bed for hydrotreating petroleum intermediates. (From Clausen et al, 1992.)...
MAK hydrocracking [Mobil Akzo Kellogg] A process for making high-quality, low-sulfur fuels from a variety of petroleum intermediates. Developed jointly by the three companies named. Two units were operating in 1996. [Pg.170]

As discussed by Nelson (op. cit.), virtually no fractionation occurs in an ASTM distillation. Thus, components in the mixture do distill one by one in the order of their boiling points but as mixtures of successively higher boiling points. The IBP, EP, and intermediate points have little theoretical significance, and, in fact, components boiling below the IBP and above the EP are present in the sample. Nevertheless, because ASTM distillations are quickly conducted, have been successfully automated, require only a small sample, and are quite reproducible, they are widely used for comparison and as a basis for specifications on a large number of petroleum intermediates and products, including many solvents and fuels. Typical ASTM curves for several such products are shown in Fig. 13-102. [Pg.100]

Plastics must be pretreated to render them pumpable before they can be used in petroleum processing. The pumpability of thermoplastics is achieved by means of a reduction of the molar mass to 1,000-15,000 g/mol (chain shortening). Duroplastics can be reduced to less than 100 pm by means of mechanical conuninution and slurrying with small amounts of petroleum intermediate products and introduced into the process via the classic coal pathway as a suspension [14]. This makes it possible to close the material lifecycle of polymers completely by breaking them down into low molecular products, which are then fed into refineries for polymer synthesis. When these materials are fed into a refinery, however, their chlorine content must not exceed 1 ppm. [Pg.407]

A number of business units have reeently been sold in an attempt to improve the eompany s financial position, which helps to explain the reduction in sales. They include the electronic materials imit to Carlyle, cellulose ethers to Shin-Etsu, and Lancaster Synthesis to Johnson Matthey. Further divestments are expected. Some of the companies sold were especially dependent on petroleum intermediates, and their loss makes Clariant feel less vulnerable to fluctuating crude oil price rises. [Pg.170]

This factor is the intermediate parameter employed in numerous calculational methods. For petroleum cuts obtained by distillation from the same crude oil, the Watson factor is generally constant when the boiling points are above 200°C. [Pg.97]

They are classified apart in this text because their use differs from that of petroleum solvents they are used as raw materials for petrochemicals, particularly as feeds to steam crackers. Naphthas are thus industrial intermediates and not consumer products. Consequently, naphthas are not subject to governmental specifications, but only to commercial specifications that are re-negotiated for each contract. Nevertheless, naphthas are in a relatively homogeneous class and represent a large enough tonnage so that the best known properties to be highlighted here. [Pg.275]

Chemists make compounds and strive to understand their reactions. My own interest lies in the chemistry of the compounds of the elements carbon and hydrogen, called hydrocarbons. These make up petroleum oil and natural gas and thus are in many ways essential for everyday life. They generate energy and heat our houses, fuel our cars and airplanes and are raw materials for most manmade materials ranging from plastics to pharmaceuticals. Many of the chemical reactions essential to hydrocarbons are catalyzed by acids and proceed through positive ion intermediates, called carbocations. [Pg.182]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Although the rapid cost increases and shortages of petroleum-based feedstocks forecast a decade ago have yet to materialize, shift to natural gas or coal may become necessary in the new century. Under such conditions, it is possible that acrylate manufacture via acetylene, as described above, could again become attractive. It appears that condensation of formaldehyde with acetic acid might be preferred. A coal gasification complex readily provides all of the necessary intermediates for manufacture of acrylates (92). [Pg.156]

It has been known since the early 1950s that butadiene reacts with CO to form aldehydes and ketones that could be treated further to give adipic acid (131). Processes for producing adipic acid from butadiene and carbon monoxide [630-08-0] have been explored since around 1970 by a number of companies, especially ARCO, Asahi, BASF, British Petroleum, Du Pont, Monsanto, and Shell. BASF has developed a process sufficiendy advanced to consider commercialization (132). There are two main variations, one a carboalkoxylation and the other a hydrocarboxylation. These differ in whether an alcohol, such as methanol [67-56-1is used to produce intermediate pentenoates (133), or water is used for the production of intermediate pentenoic acids (134). The former is a two-step process which uses high pressure, >31 MPa (306 atm), and moderate temperatures (100—150°C) (132—135). Butadiene,... [Pg.244]

Naphthalene, anthracene, carbazole [86-74-8] phenol [108-95-2] and cresyUc acids are found in the tar. Phenol and cresyUc acids are useful as chemical and resin intermediates. The aromatic chemicals are useful in the manufacture of pharmaceuticals, dyes, fragrances, and pesticides. Various grades of pitch are made from residues of tar refining. Coal-tar pitch is used for roofing and road tar, and as a binder mixed with petroleum coke to produce anodes for the aluminum industry. [Pg.162]

Calcium carbide has been used in steel production to lower sulfur emissions when coke with high sulfur content is used. The principal use of carbide remains hydrolysis for acetylene (C2H2) production. Acetylene is widely used as a welding gas, and is also a versatile intermediate for the synthesis of many organic chemicals. Approximately 450,000 t of acetylene were used aimuaHy in the early 1960s for the production of such chemicals as acrylonitrile, acrylates, chlorinated solvents, chloroprene, vinyl acetate, and vinyl chloride. Since then, petroleum-derived olefins have replaced acetylene in these uses. [Pg.166]

Fluorine reacts with the halogens and antimony to produce several compounds of commercial importance antimony pentafluoride [7783-70-2J, bromine trifluoride [7787-71 chlorine trifluoride [7790-91 -2J, and iodine pentafluoride [7783-66-6J. Chlorine trifluoride is used in the processing of UF (see Uraniumand uranium compounds). Bromine trifluoride is used in chemical cutting by the oil well industry (see Petroleum). Antimony and iodine pentafluorides are used as selective fluorinating agents to produce fluorochemical intermediates (see Fluorine compounds, inorganic). [Pg.131]

The heavy vacuum bottoms stream is fed to a Flexicoking unit. This is a commercial (125,126) petroleum process that employs circulating fluidized beds at low (0.3 MPa (50 psi)) pressures and intermediate temperatures, ie, 480—650°C in the coker and 815—980°C in the gasifier, to produce high yields of hquids or gases from organic material present in the feed. Residual carbon is rejected with the ash from the gasifier fluidized bed. The total Hquid product is a blend of streams from Hquefaction and the Flexicoker. [Pg.91]

Aliphatic Chemicals. The primary aliphatic hydrocarbons used in chemical manufacture are ethylene (qv), propjiene (qv), butadiene (qv), acetylene, and / -paraffins (see Hydrocarbons, acetylene). In order to be useflil as an intermediate, a hydrocarbon must have some reactivity. In practice, this means that those paraffins lighter than hexane have Httle use as intermediates. Table 5 gives 1991 production and sales from petroleum and natural gas. Information on uses of the C —C saturated hydrocarbons are available in the Hterature (see Hydrocarbons, C —C ). [Pg.366]

Cyclic Hydrocarbons. The cyclic hydrocarbon intermediates are derived principally from petroleum and natural gas, though small amounts are derived from coal. Most cycHc intermediates are used in the manufacture of more advanced synthetic organic chemicals and finished products such as dyes, medicinal chemicals, elastomers, pesticides, and plastics and resins. Table 6 details the production and sales of cycHc intermediates in 1991. Benzene (qv) is the largest volume aromatic compound used in the chemical industry. It is extracted from catalytic reformates in refineries, and is produced by the dealkylation of toluene (qv) (see also BTX Processing). [Pg.367]

The red tetrathiomolybdate ion appears to be a principal participant in the biological Cu—Mo antagonism and is reactive toward other transition-metal ions to produce a wide variety of heteronuclear transition-metal sulfide complexes and clusters (13,14). For example, tetrathiomolybdate serves as a bidentate ligand for Co, forming Co(MoSTetrathiomolybdates and their mixed metal complexes are of interest as catalyst precursors for the hydrotreating of petroleum (qv) (15) and the hydroHquefaction of coal (see Coal conversion processes) (16). The intermediate forms MoOS Mo02S 2> MoO S have also been prepared (17). [Pg.470]


See other pages where Petroleum intermediates is mentioned: [Pg.1325]    [Pg.93]    [Pg.122]    [Pg.122]    [Pg.614]    [Pg.618]    [Pg.236]    [Pg.1148]    [Pg.364]    [Pg.1329]    [Pg.223]    [Pg.30]    [Pg.1325]    [Pg.93]    [Pg.122]    [Pg.122]    [Pg.614]    [Pg.618]    [Pg.236]    [Pg.1148]    [Pg.364]    [Pg.1329]    [Pg.223]    [Pg.30]    [Pg.187]    [Pg.261]    [Pg.302]    [Pg.134]    [Pg.199]    [Pg.78]    [Pg.362]    [Pg.366]    [Pg.368]    [Pg.409]    [Pg.451]    [Pg.237]    [Pg.158]   
See also in sourсe #XX -- [ Pg.618 ]




SEARCH



© 2024 chempedia.info