Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural product pesticides

The avermectins are closely related to another group of pesticidal natural products, the milhemycins. First described by Japanese workers, milhemycins were later found to be more abundant in nature than the avermectins (7—12). Both the avermectins and milhemycins are sixteen-memhered lactones, with a spiroketal system containing two six-memhered rings. The principal difference between them is that the avermectins have an a-L-oleandrosyl-a-L-oleandrosyl disaccharide attached at the 13-position whereas the milhemycins have no 13-substituent. Milhemycin stmctures are shown in Figure 2. [Pg.278]

The development of Individual natural product structures as pesticides will be subject to the same economic factors that affect synthetic pesticides. Natural products do not differ from compounds synthesized in the laboratory, but they may, as products of biological processes, be more readily degraded than many man-made structures. Although the potential for facile degradation may have favourable implications for environmental safety, there is little justification for the assumption a priori. that because a compound is a natural product, it possesses no undesirable toxicological properties. Toxicological tests must be performed for both natural and man-made compounds before registration as pesticides. [Pg.326]

Examination of the various classified listings of herbicides provides iasight iato the processes and approaches that lead to the discovery of new pesticides. The four principal development approaches are random screening, imitative chemistry, testing natural products, and biorational development. [Pg.38]

These chemorational techniques have generated great interest in, and high expectations for, the acceleration of development of innovative pesticides. However, many purportedly successful appHcations of QSAR procedures have reHed on the quaHtative insights traditionally associated with art-based pesticide development programs. Retrospective QSAR analyses have, however, been helpful in identifying the best compounds for specific uses (17). Chemorational techniques have also found some appHcations in the development of pesticides from natural product lead compounds, the best known examples being the synthetic pyrethroid insecticides (19) modeled on the plant natural product, pyrethmm. [Pg.39]

Experimental procedures have been described in which the desired reactions have been carried out either by whole microbial cells or by enzymes (1—3). These involve carbohydrates (qv) (4,5) steroids (qv), sterols, and bile acids (6—11) nonsteroid cycHc compounds (12) ahcycHc and alkane hydroxylations (13—16) alkaloids (7,17,18) various pharmaceuticals (qv) (19—21), including antibiotics (19—24) and miscellaneous natural products (25—27). Reviews of the microbial oxidation of aUphatic and aromatic hydrocarbons (qv) (28), monoterpenes (29,30), pesticides (qv) (31,32), lignin (qv) (33,34), flavors and fragrances (35), and other organic molecules (8,12,36,37) have been pubflshed (see Enzyp applications, industrial Enzyt s in organic synthesis Elavors AND spices). [Pg.309]

Supercritical fluid extraction (SFE) has been widely used to the extraction processes in pharmaceutical industries. Besides application of SFE in phannaceuticals, it has been applied on a wide spectmm of natural products and food industries such as natural pesticides, antioxidants, vegetable oil, flavors, perfumes and etc [1-2]. [Pg.365]

We can list the following areas as prime targets essential oil and natural product analysis, chiral analysis (e.g. of fragrances), trace multi-residue analysis, pesticide monitoring, and further petroleum products applications, in fact any separation where simply greater resolution and sensitivity is demanded-which means probably almost... [Pg.104]

Many pesticides are not as novel as they may seem. Some, such as the pyre-throid and neonicotinoid insecticides, are modeled on natural insecticides. Synthetic pyrethroids are related to the natural pyrethrins (see Chapter 12), whereas the neo-nicotinoids share structural features with nicotine. In both cases, the synthetic compounds have the same mode of action as the natural products they resemble. Also, the synthetic pyrethroids are subject to similar mechanisms of metabolic detoxication as natural pyrethrins (Chapter 12). More widely, many detoxication mechanisms are relatively nonspecific, operating against a wide range of compounds that... [Pg.3]

Mode of action research has caused similar challenges for investigators working with either natural products or synthetic pesticides. The major difficulty is to separate secondary effects from primary causes. Although effects can be measured in... [Pg.5]

Many definitions of sustainable agriculture are reported by literature, but all are related to the basic concept of a profitable crop production with no environmental pollution and depletion of farm and natural resources, including effects on soil, water, and biodiversity (Doran 2002 Francis et al. 2006). Soil solarization seems to fit the fundaments of sustainable agriculture as providing an effective and environmentally safe control of many soilbome pests and more competitive market positions and higher prices to pesticide-free products. [Pg.251]

LLE has been used in the past for the extraction of pesticides from environmental water samples [17]. However, its application in the extraction of waste-water samples is scarce due to the low efficiency of extraction, especially for polar analytes. Because of the vast amount of surfactants and natural products present in wastewater samples, emulsions are formed which complicate the process of extraction and lead to low extraction recoveries. However, there have been some useful applications of LLE to wastewater analyses. For example, LLE was found to be effective for the isolation of herbicide and pesticide organic compounds from industrial wastewater samples and also from complex matrices [18]. [Pg.55]

Certain organic forms of mercury can elicit specific damage in the main cell body of peripheral neurons. Similar responses are associated with certain natural products called vincristine and vinblastine, both of which have been used as antileukemic medicines. The deadly botulinum toxins, mentioned earlier in this chapter, block transmission of nerve impulses at the synapses of motor neurons. This blockage results in muscular paralysis which, if sufficiently severe, can lead to death, usually because respiration is impaired. The once widely used pesticide, DDT, is an organic chemical that also acts on the nervous system at this site, although it can also mount an attack on areas of the CNS. [Pg.124]

Organic gardening is not just a matter of replacing chemicals such as artificial fertilizers and pesticides with more natural products, as it is often simplistically described. There is a great deal more to it than that, in both theory and practice. [Pg.18]

The molecules produced by living organisms, natural products, are employed in our lives as flavors, fragrances, pharmaceuticals, nontraditional medicines, dyes, and pesticides, among other uses. The products of chemistry are employed in our food as preservatives, artificial sweeteners, thickeners, dyes, taste enhancers, flavors, and textnring agents. Chemistry creates such key materials as plastics, ceramics, fabrics, alloys, semiconductors, liquid crystals, optical media, and biomaterials. Chemistry also does many kinds of analysis and these include measurements of air quahty, water quality, food safety, and the search for substances that compromise the enviromnent or workplace safety. [Pg.33]

Phosphorus in the subsurface originates from a natural parent material or anthropogenic application on land surface (e.g., fertilizers, pesticides, surfactant products, sludge, and effluents). This element may be found in inorganic or organic forms, which are in a dynamic equihbrium with dissolved P in the subsurface liquid phase. [Pg.313]

The avermectin natural products are pesticides possessing novel chemistry and mode of action. Cross-resistance has not been observed in laboratory or field studies with mites andinsects tolerant to commercially available organophosphate, carbamate, chlorinated hydrocarbon and pyrethroid pesticides. [Pg.14]

EINECS is a closed list containing 100,106 entries and counts for about 99% of the chemicals volume on the market. EINECS include chemical substances produced from natural products by chemical modifications or purification, such as metals, minerals, cement, refined oil, and gas substances produced from animals and plants active substances of pesticides, medicaments, fertilizers, and cosmetic products food additives a few natural polymers and some waste and by-products. They can be mixtures of different chemicals occurring namrally or as an unintentional result of the production process. [Pg.35]

As reviewed by Ujvary some of the earliest natural product-based pesticides were those for the elimination of vertebrate pests. For example, strychnine (Fig. 19), obtained from seeds of Strychnos nux-vomica, is a rodenticide that is an antagonist to the neurotransmitter glycine and is used against a few mammal species, as well as pest birds and fish. The first generation of anticoagulant rodenticides were based on dicoumarin. [Pg.235]

Ujvay 1, Natural product pesticides, in Plimmet JR (ed.) Encyclopedia of Agrochemicals, Vol. 3, WUey-lnterscience. Hoboken, NJ, pp. 1090—1103, 2003. [Pg.249]

Natural products represent an immense reservoir of new molecules for the development of pesticide agents. In particular, natural products based herbicides have become attractive in recent years for a few reasons. One of the reasons is that they are environmentally benign. Furthermore, the novelty of their structures offers the possibility of finding compounds with new mode of actions, thus diminishing the induction of plant resistance, a problem associated with commonly used synthetic herbicides. [Pg.427]


See other pages where Natural product pesticides is mentioned: [Pg.115]    [Pg.115]    [Pg.446]    [Pg.39]    [Pg.55]    [Pg.111]    [Pg.458]    [Pg.47]    [Pg.1]    [Pg.4]    [Pg.7]    [Pg.8]    [Pg.326]    [Pg.348]    [Pg.84]    [Pg.550]    [Pg.172]    [Pg.84]    [Pg.348]    [Pg.66]    [Pg.23]    [Pg.270]    [Pg.3]    [Pg.4]    [Pg.169]    [Pg.26]    [Pg.12]    [Pg.209]    [Pg.236]    [Pg.243]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Natural pesticides

Pesticides productivity

© 2024 chempedia.info