Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perturbed crystal model

An approach in which the amorphous solid is not considered as a perturbed crystal was suggested by Phillips (1971a). He proposed a model which is isotropic and independent of the crystalline structure, except for the assumption that the local symmetry corresponding to the covalent bonds of the basic unit is conserved but distorted. [Pg.203]

Some models assign to the liquid either the properties of a compressed gas or those of a perturbed crystal by virtue of common properties of liquids and gases or liquids and solids. The gas-liquid continuity may be shown by experiments proving that close to the critical point, a continuous... [Pg.49]

The chemistry of interest is often not merely the inhnite crystal, but rather how some other species will interact with that crystal. As such, it is necessary to model a system that is an inhnite crystal except for a particular site where something is diherent. The same techniques for doing this can be used, regardless of whether it refers to a defect within the crystal or something binding to the surface. The most common technique is a Mott-Littleton defect calculation. This technique embeds a defect in an inhnite crystal, which can be considered a local perturbation to the band structure. [Pg.319]

In the next section we describe a very simple model, which we shall term the crystalline model , which is taken to represent the real, complicated crystal. Some additional, more physical, properties are included in the later calculations of the well-established theories (see Sect. 3.6 and 3.7.2), however, they are treated as perturbations about this basic model, and depend upon its being a good first approximation. Then, Sect. 2.1 deals with the information which one would hope to obtain from equilibrium crystals — this includes bulk and surface properties and their relationship to a crystal s melting temperature. Even here, using only thermodynamic arguments, there is no common line of approach to the interpretation of the data, yet this fundamental problem does not appear to have received the attention it warrants. The concluding section of this chapter summarizes and contrasts some further assumptions made about the model, which then lead to the various growth theories. The details of the way in which these assumptions are applied will be dealt with in Sects. 3 and 4. [Pg.226]

It is now well-established that for atomic fluids, far from the critical point, the atomic organisation is dictated by the repulsive forces while the longer range attractive forces serve to maintain the high density [34]. The investigation of systems of hard spheres can therefore be used as simple models for atomic systems they also serve as a basis for a thermodynamic perturbation analysis to introduce the attractive forces in a van der Waals-like approach [35]. In consequence it is to be expected that the anisotropic repulsive forces would be responsible for the structure of liquid crystal phases and numerous simulation studies of hard objects have been undertaken to explore this possibility [36]. [Pg.80]

Schaffer CE (1968) A Perturbation Representation of Weak Covalent Bonding. 5 68-95 Schaffer CE (1973) Two Symmetry Parameterizations of the Angular-Overlap Model of the Ligand-Field. Relation to the Crystal-Field Model. 14 69-110 Scheldt WR, Lee YJ (1987) Recent Advances in the Stereochemistry of Metallotetrapyrroles. 64 1-70... [Pg.254]

In spite of the absence of periodicity, glasses exhibit, among other things, a specific volume, interatomic distances, coordination number, and local elastic modulus comparable to those of crystals. Therefore it has been considered natural to consider amorphous lattices as nearly periodic with the disorder treated as a perturbation, oftentimes in the form of defects, so such a study is not futile. This is indeed a sensible approach, as even the crystals themselves are rarely perfect, and many of their useful mechanical and other properties are determined by the existence and mobility of some sort of defects as well as by interaction between those defects. Nevertheless, a number of low-temperamre phenomena in glasses have persistently evaded a microscopic model-free description along those lines. A more radical revision of the concept of an elementary excitation on top of a unique ground state is necessary [3-5]. [Pg.97]

In this paper a method [11], which allows for an a priori BSSE removal at the SCF level, is for the first time applied to interaction densities studies. This computational protocol which has been called SCF-MI (Self-Consistent Field for Molecular Interactions) to highlight its relationship to the standard Roothaan equations and its special usefulness in the evaluation of molecular interactions, has recently been successfully used [11-13] for evaluating Eint in a number of intermolecular complexes. Comparison of standard SCF interaction densities with those obtained from the SCF-MI approach should shed light on the effects of BSSE removal. Such effects may then be compared with those deriving from the introduction of Coulomb correlation corrections. To this aim, we adopt a variational perturbative valence bond (VB) approach that uses orbitals derived from the SCF-MI step and thus maintains a BSSE-free picture. Finally, no bias should be introduced in our study by the particular approach chosen to analyze the observed charge density rearrangements. Therefore, not a model but a theory which is firmly rooted in Quantum Mechanics, applied directly to the electron density p and giving quantitative answers, is to be adopted. Bader s Quantum Theory of Atoms in Molecules (QTAM) [14, 15] meets nicely all these requirements. Such a theory has also been recently applied to molecular crystals as a valid tool to rationalize and quantitatively detect crystal field effects on the molecular densities [16-18]. [Pg.105]

Slip is not always a purely dissipative process, and some energy can be stored at the solid-liquid interface. In the case that storage and dissipation at the interface are independent processes, a two-parameter slip model can be used. This can occur for a surface oscillating in the shear direction. Such a situation involves bulk-mode acoustic wave devices operating in liquid, which is where our interest in hydrodynamic couphng effects stems from. This type of sensor, an example of which is the transverse-shear mode acoustic wave device, the oft-quoted quartz crystal microbalance (QCM), measures changes in acoustic properties, such as resonant frequency and dissipation, in response to perturbations at the surface-liquid interface of the device. [Pg.68]

The model of a reacting molecular crystal proposed by Luty and Eckhardt [315] is centered on the description of the collective response of the crystal to a local strain expressed by means of an elastic stress tensor. The local strain of mechanical origin is, for our purposes, produced by the pressure or by the chemical transformation of a molecule at site n. The mechanical perturbation field couples to the internal and external (translational and rotational) coordinates Q n) generating a non local response. The dynamical variable Q can include any set of coordinates of interest for the process under consideration. In the model the system Hamiltonian includes a single molecule term, the coupling between the molecular variables at different sites through a force constants matrix W, and a third term that takes into account the coupling to the dynamical variables of the operator of the local stress. In the linear approximation, the response of the system is expressed by a response function X to a local field that can be approximated by a mean field V ... [Pg.167]

According to the model, a perturbation at one site is transmitted to all the other sites, but the key point is that the propagation occurs via all the other molecules as a collective process as if all the molecules were connected by a network of springs. It can be seen that the model stresses the concept, already discussed above, that chemical processes at high pressure cannot be simply considered mono- or bimolecular processes. The response function X representing the collective excitations of molecules in the lattice may be viewed as an effective mechanical susceptibility of a reaction cavity subjected to the mechanical perturbation produced by a chemical reaction. It can be related to measurable properties such as elastic constants, phonon frequencies, and Debye-Waller factors and therefore can in principle be obtained from the knowledge of the crystal structure of the system of interest. A perturbation of chemical nature introduced at one site in the crystal (product molecules of a reactive process, ionized or excited host molecules, etc.) acts on all the surrounding molecules with a distribution of forces in the reaction cavity that can be described as a chemical pressure. [Pg.168]

So far we have assumed that the electronic structure of the crystal consists of one band derived, in our approximation, from a single atomic state. In general, this will not be a realistic picture. The metals, for example, have a complicated system of overlapping bands derived, in our approximation, from several atomic states. This means that more than one atomic orbital has to be associated with each crystal atom. When this is done, it turns out that even the equations for the one-dimensional crystal cannot be solved directly. However, the mathematical technique developed by Baldock (2) and Koster and Slater (S) can be applied (8) and a formal solution obtained. Even so, the question of the existence of otherwise of surface states in real crystals is diflBcult to answer from theoretical considerations. For the simplest metals, i.e., the alkali metals, for which a one-band model is a fair approximation, the problem is still difficult. The nature of the difficulty can be seen within the framework of our simple model. In the first place, the effective one-electron Hamiltonian operator is really different for each electron. If we overlook this complication and use some sort of mean value for this operator, the operator still contains terms representing the interaction of the considered electron with all other electrons in the crystal. The Coulomb part of this interaction acts in such a way as to reduce the effect of the perturbation introduced by the existence of a free surface. A self-consistent calculation is therefore essential, and the various parameters in our theory would have to be chosen in conformity with the results of such a calculation. [Pg.6]


See other pages where Perturbed crystal model is mentioned: [Pg.425]    [Pg.425]    [Pg.299]    [Pg.327]    [Pg.71]    [Pg.24]    [Pg.2149]    [Pg.116]    [Pg.59]    [Pg.119]    [Pg.609]    [Pg.115]    [Pg.272]    [Pg.255]    [Pg.101]    [Pg.201]    [Pg.89]    [Pg.51]    [Pg.160]    [Pg.38]    [Pg.301]    [Pg.33]    [Pg.105]    [Pg.305]    [Pg.100]    [Pg.106]    [Pg.106]    [Pg.393]    [Pg.113]    [Pg.211]    [Pg.556]    [Pg.143]    [Pg.236]    [Pg.10]    [Pg.145]    [Pg.310]    [Pg.21]    [Pg.632]   
See also in sourсe #XX -- [ Pg.58 , Pg.83 ]




SEARCH



Modeling crystallization

Perturbation model

Perturbative model

© 2024 chempedia.info