Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptidases aminopeptidase

Peptidases. Aminopeptidase B (EC 3.4.11.6. aminopeptidase Ml) is thought to be a chloride-activated-thiolproteinase. Substrates of interest include leu-enkephalin, met-enkephalin and bradykinin. Inhibitors include arphamenine A and arphamenine B. [Pg.237]

There are several different types of exopeptidases aminopeptidases, carboxypeptidases, dipeptidyl-peptidases, tripeptidy 1-peptidases, peptidyl-... [Pg.882]

Gener ally, a family of peptidases contains either exopeptidases or endopeptidases, but there are exceptions. Family Cl contains not only endopeptidases such as cathepsin L, but also the aminopeptidase bleomycin hydrolase. Some members of this family can act as exopeptidases as well as endopeptidases. For example, cathepsin B also acts as a peptidyl-dipeptidase, and... [Pg.882]

Inhibitors which interact only with peptidases of one catalytic type include pepstatin (aspartic peptidases) E64 (cysteine peptidases from clan CA) diisopropyl fluorophosphates (DFP) and phenylmethane sulfonyl-fluoride (PMSF) (serine peptidases). Bestatin is a useful inhibitor of aminopeptidases. [Pg.883]

Other interesting examples of proteases that exhibit promiscuous behavior are proline dipeptidase from Alteromonas sp. JD6.5, whose original activity is to cleave a dipeptide bond with a prolyl residue at the carboxy terminus [121, 122] and aminopeptidase P (AMPP) from E. coli, which is a prohne-specific peptidase that catalyzes the hydrolysis of N-terminal peptide bonds containing a proline residue [123, 124]. Both enzymes exhibit phosphotriesterase activity. This means that they are capable of catalyzing the reaction that does not exist in nature. It is of particular importance, since they can hydrolyze unnatural substrates - triesters of phosphoric acid and diesters of phosphonic acids - such as organophosphorus pesticides or organophosphoms warfare agents (Scheme 5.25) [125]. [Pg.115]

In addition to oxidative and conjugative metabolism, other enzymes are also present in the Caco-2 model, though at lower levels than in the human enterocyte in vivo. These are mainly apical cell surface peptidases, such as aminopeptidases... [Pg.116]

Augustyns, K., der Veken, P.V., Senten, K. and Haemers, A. (2005) The therapeutic potential of inhibitors of dipeptidyl peptidase IV (DPP-IV) and related proline-specific dipeptidyl aminopeptidases. Current Medicinal Chemistry, 12, 971-998 (c) Augustyns, K., der Veken, P.V. and Haemers, A. [Pg.417]

A recent study, however, has shown that aminopeptidase activity is present on the surface of porcine buccal mucosa, and that various aminopeptidase inhibitors, including amastatin and sodium deoxycholate, reduce the mucosal surface degradation of the aminopeptidase substrate, leucine-enkephalin [149], Since the peptidases are present on the surface of the buccal mucosa, they may act as a significant barrier to the permeability of compounds which are substrates for the enzyme. In addition to proteolytic enzymes, there exist some esterases, oxidases, and reductases originating from buccal epithelial cells, as well as phosphatases and carbohydrases present in saliva [154], all of which may potentially be involved in the metabolism of topically applied compounds. [Pg.94]

Juillerat-Jeanneret L, Aubert JD, Leuenberger P (1997) Peptidases in human bronchoalveolar lining fluid, macrophages, and epithelial cells Dipeptidyl (amino)peptidase IV, aminopeptidase N, and dipeptidyl (carboxy)peptidase (angiotensin-converting enzyme). J Lab Clin Med 130(6) 603—614. [Pg.257]

The NC-IUBMB classifies peptidases (EC 3.4) into exopeptidases (EC 3.4.11-19), which remove one or a few amino acids, and endopeptidases (proteinases, EC 3.4.21-99), which catalyze the cleavage of peptide bonds away from either end of the polypeptide chain (Fig. 2.1). Exopeptidases are further subdivided into enzymes that carry out hydrolysis at the N-terminus or the C-terminus (Figs. 2.1 and 2.2). Thus, aminopeptidases (EC 3.4.11) cleave a single amino acid from the N-terminus [3] those removing a dipep-... [Pg.30]

One of the general principles of the Nomenclature Committee is that enzymes should be classified and named according to the reaction they catalyze. However, the overlapping specificities of and great similarities in the action of different peptidases render naming solely on the basis of function impossible [10]. For example, some enzymes can act as both endo- and exopeptidases. Thus, cathepsin H (EC 3.4.22.16) is not only an endopeptidase but also acts as an aminopeptidase (EC 3.4.11), and cathepsin B (EC 3.4.22.1) acts as an endopeptidase as well as a peptidyl-dipeptidase (EC 3.4.15). The actual classification of peptidases is, therefore, a compromise based not only on the reaction catalyzed but also on the chemical nature of the catalytic site, on physiological function, and on historical priority. [Pg.33]

The evolutionary classification has a rational basis, since, to date, the catalytic mechanisms for most peptidases have been established, and the elucidation of their amino acid sequences is progressing rapidly. This classification has the major advantage of fitting well with the catalytic types, but allows no prediction about the types of reaction being catalyzed. For example, some families contain endo- and exopeptidases, e.g., SB-S8, SC-S9 and CA-Cl. Other families exhibit a single type of specificity, e.g., all families in clan MB are endopeptidases, family MC-M14 is almost exclusively composed of carboxypeptidases, and family MF-M17 is composed of aminopeptidases. Furthermore, the same enzyme specificity can sometimes be found in more than one family, e.g., D-Ala-D-Ala carboxypeptidases are found in four different families (SE-S11, SE-S12, SE-S13, and MD-M15). [Pg.35]

Membrane alanyl aminopeptidase (microsomal aminopeptidase, amino-peptidase M, EC 3.4.11.2) and peptidyl-dipeptidase A (angiotensin I converting enzyme, EC 3.4.15.1) located in the vascular endothelium and smooth muscle cell surface modulate the levels of vasoactive peptides [23], One of the roles of membrane-bound enzymes is to switch off the action of peptides in the vicinity of the target or to prevent them from gaining access to a region containing receptors that are activated only by locally released peptides. [Pg.38]

Preliminary information useful in prodrug design has been obtained with amino acids attached to model aromatic amines. Thus, N-(naphthalen-2-yl) amides of amino acids (6.1, R=side chain of amino acid, R =H) proved to be of interest as test compounds to monitor peptidase activity such as ami-nopeptidase M (membrane alanyl aminopeptidase, microsomal aminopepti-dase, EC 3.4.11.2) [16][17], In the presence of purified rabbit kidney aminopeptidase M or human cerebrospinal fluid (CSF) aminopeptidase activity, the rate of hydrolysis decreased in the order Ala-> Leu->Arg->Glu-2-naphthyl-amide. Ala-2-naphthylamide, in particular, proved to be a good test compound, as its rate of hydrolysis was influenced by experimental conditions (preparation, inhibitors, etc.), as was the hydrolysis of a number of low-molecular-weight opioid peptides and circulating vasoactive peptides. [Pg.262]

A number of observations converge to indicate that much of plasma peptidase activity is due to aminopeptidases, with A-protection markedly increasing peptide stability in blood. Dipeptidyl-peptidase is another noteworthy peptidase in blood. In human plasma, some of the peptides showed very small tm values of only a few minutes, but a majority of f1/2 values were on the order of 10-30 min. [Pg.335]

Bradykinin (Fig. 6.34) is a vasoactive nonapeptide that is hydrolyzed by a variety of peptidases. Its N-terminus is susceptible to cleavage, but only by aminopeptidase P (X-Pro aminopeptidase, EC 3.4.11.9). Dipeptidyl-pepti-dase IV can then cleave the N-terminus dipeptide of bradykinin-(2-9). However, most cleavage reactions have been found to occur at or close to the C-terminus, with angiotensin-converting enzyme (ACE, peptidyl-dipeptidase A, EC 3.4.15.1) playing an important role. In fact, aminopeptidase P and ACE accounted for ca. 30 and 70%, respectively, of total bradykininase activity in the isolated perfused rat heart [164], As shown in Fig. 6.34, ACE... [Pg.337]

The pattern and efficiency of hydrolysis of [Leu5]enkephalin, like that of any peptide, depends to a large extent on its compartmentalization. In other words, the qualitative and quantitative aspects of its degradation vary considerably as a function of species, tissue, and concentration profile. Thus, hydrolysis of [Leu5] enkephalin in rat brain is catalyzed mainly by aminopeptidase, ACE, and neprilysin, in rat lungs by aminopeptidase and ACE, and in rat plasma by aminopeptidase, dipeptidyl peptidase III, and ACE [171][172],... [Pg.339]

These proteolytic enzymes are all endopeptidases, which hydrolyse links in the middle of polypeptide chains. The products of the action of these proteolytic enzymes are a series of peptides of various sizes. These are degraded further by the action of several peptidases (exopeptidases) that remove terminal amino acids. Carboxypeptidases hydrolyse amino acids sequentially from the carboxyl end of peptides. They are secreted by the pancreas in proenzyme form and are each activated by the hydrolysis of one peptide bond, catalysed by trypsin. Aminopeptidases, which are secreted by the absorptive cells of the small intestine, hydrolyse amino acids sequentially from the amino end of peptides. In addition, dipeptidases, which are structurally associated with the glycocalyx of the entero-cytes, hydrolyse dipeptides into their component amino acids. [Pg.80]

The exopeptidases attack peptides from their termini. Peptidases that act at the N terminus are known as aminopeptidases, while those that recognize the C terminus are called carboxypeptidases. The dipeptidases only hydrolyze dipeptides. [Pg.176]

This enzyme [EC 3.4.11.9] (also known as Xaa-Pro aminopeptidase, X-Pro aminopeptidase, proline amino-peptidase, and aminoacylproline aminopeptidase) catalyzes the hydrolysis of a peptide bond at the iV-terminus of a peptide provided that the iV-terminal amino acyl residue is linked to a prolyl residue by that peptide bond. The enzyme will also act on dipeptides and tripeptides with that same restriction. Either manganese or cobalt is needed as a cofactor. This enzyme appears to be a membrane-bound system in both mammalian and bacterial cells. The protein belongs to the peptidase family M24B. [Pg.55]

This mammalian lysosomal endopeptidase [EC 3.4.22.16] is also known as aleurain, cathepsin B3, cathepsin BA, and benzoylarginineinaphthylamide hydrolase. A member of the peptidase family Cl, the enzyme also acts with an aminopeptidase activity, preferring Arg— Xaa peptide bonds. [Pg.122]

This zinc-dependent enzyme [EC 3.4.11.1], also referred to as cytosol aminopeptidase, leucyl aminopeptidase, and peptidase S, catalyzes the hydrolysis of a terminal peptide bond such that there is a release of an N-terminal amino acid, Xaa-Xbb-, in which Xaa is preferably a leucyl residue, but may be other aminoacyl residues including prolyl (although not arginyl or lysyl). Xbb may be prolyl. In addition, amino acid amides and methyl esters are also readily hydrolyzed, but the rates with arylamides are exceedingly slow. The enzyme is activated by heavy metal ions. [Pg.418]

This enzyme [EC 3.4.19.3], a member of the C15 peptidase family, is also known as pyroglutamyl-peptidase 1,5-oxoprolyl-peptidase, pyrrolidone-carboxylate peptidase, and pyroglutamyl aminopeptidase. This hydrolase catalyzes the conversion of a 5-oxoprolyl-peptide to produce 5-oxoproline and a peptide. The enzyme will not act on the 5-oxoprolyl peptide if the adjacent amino acid is l-proline. Enzyme activity is inhibited by thiol-blocking reagents. [Pg.590]


See other pages where Peptidases aminopeptidase is mentioned: [Pg.233]    [Pg.9]    [Pg.233]    [Pg.9]    [Pg.882]    [Pg.96]    [Pg.254]    [Pg.254]    [Pg.106]    [Pg.224]    [Pg.259]    [Pg.263]    [Pg.324]    [Pg.121]    [Pg.119]    [Pg.126]    [Pg.249]    [Pg.37]    [Pg.282]    [Pg.331]    [Pg.339]    [Pg.340]    [Pg.345]    [Pg.279]    [Pg.452]    [Pg.523]    [Pg.204]   
See also in sourсe #XX -- [ Pg.720 , Pg.723 , Pg.802 , Pg.809 , Pg.1341 , Pg.1399 ]




SEARCH



Aminopeptidase

Aminopeptidases

Aminopeptidases aminopeptidase

Peptidase leucine aminopeptidase

Peptidases

Peptidases leucyl aminopeptidase

© 2024 chempedia.info