Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptidases families

This enzyme [EC 3.4.21.10] catalyzes the hydrolysis of Arg-Xaa and Lys-Xaa peptide bonds. The enzyme belongs to the peptidase family SI and is inhibited by naturally occurring trypsin inhibitors. [Pg.13]

This enzyme [EC 3.4.16.4], also known as serine-type D-alanyl-D-alanine carboxypeptidase, catalyzes the hydrolysis of D-alanyl-D-alanine to yield two D-alanine. This enzyme comprises a group of membrane-bound, bacterial enzymes of the peptidase family Sll. They are distinct from the zinc D-alanyl-D-alanine carboxypeptidase [EC 3.4.17.14]. The enzyme also hydrolyzes the D-alanyl-D-alanine peptide bond in the polypeptide of the cell wall. In addition, the enzyme will also catalyze the transpeptidation of peptidyl-alanyl moieties that are A-acetyl-substituents of D-alanine. The protein is inhibited by j8-lactam antibiotics, which acylate the active-site seryl residue. [Pg.42]

This enzyme [EC 3.4.11.9] (also known as Xaa-Pro aminopeptidase, X-Pro aminopeptidase, proline amino-peptidase, and aminoacylproline aminopeptidase) catalyzes the hydrolysis of a peptide bond at the iV-terminus of a peptide provided that the iV-terminal amino acyl residue is linked to a prolyl residue by that peptide bond. The enzyme will also act on dipeptides and tripeptides with that same restriction. Either manganese or cobalt is needed as a cofactor. This enzyme appears to be a membrane-bound system in both mammalian and bacterial cells. The protein belongs to the peptidase family M24B. [Pg.55]

This zinc-dependent nonhemorrhagic endopeptidase [EC 3.4.24.43] isolated from the venom of the rattlesnake Crotalus atrox is a peptidase family M12B member that catalyzes the hydrolysis of the His —Leu, Ser —His, ... [Pg.74]

This enzyme [EC 3.4.21.89], also known as signal peptidase I and phage-procoat-leader peptidase, catalyzes the hydrolysis of N-terminal leader sequences from secreted and periplasmic protein precursors. It acts on a single bond Ala-Ala in the m-13 phage procoat protein and creates the signal (leader) peptide and coat protein. It is a member of the peptidase family S26 but is unaffected by inhibitors of most serine peptidases. [Pg.77]

This enzyme [EC 3.4.22.17] is an intracellular, nonlyso-somal member of the peptidase family C2. The enzyme catalyzes the calcium ion-dependent hydrolysis of peptide bonds with preference for Tyr-Xaa, Met-Xaa, or Arg-Xaa with a leucyl or valyl residue at the P2 position. There are two main types of calpain. One has a high calcium sensitivity in the micromolar range and is called (,-calpain or calpain I. The other calpain has a low calcium sensitivity in the millimolar range and is called m-calpain or calpain II. Forms of calpain exhibiting intermediate calcium sensitivity also exist. [Pg.109]

This zinc-dependent enzyme [EC 3.4.17.1], a member of the peptidase family M14, catalyzes the hydrolysis of peptide bonds at the C-terminus of polypeptides. Little hydrolytic action occurs if the C-terminal amino acid is aspartate, glutamate, arginine, lysine, or proline. Car-boxypeptidase A is formed from a precursor protein, procarboxypeptidase A. [Pg.112]

This enzyme [EC 3.4.16.5] (also known as serine-type carboxypeptidase I, cathepsin A, carboxypeptidase Y, and lysosomal protective protein) is a member of the peptidase family SIO and catalyzes the hydrolysis of the peptide bond, with broad specificity, located at the C-terminus of a polypeptide. The pH optimum ranges from 4.5 to 6.0. The enzyme is irreversibly inhibited by diisopropyl fluorophosphate and is sensitive to thiolblocking reagents. [Pg.112]

This enzyme [EC 3.4.17.12], which is a member of peptidase family M14, catalyzes the hydrolysis of a peptide... [Pg.112]

This enzyme [EC 3.4.17.3] (also referred to as lysine carboxypeptidase, arginine carboxypeptidase, kininase I, or anaphylatoxin inactivator) is a zinc-dependent member of peptidase family M14. The enzyme hydrolyzes the peptide bond at the C-terminus provided that the C-terminal amino acid is either arginine or lysine. The enzyme inactivates bradykinin and anaphylatoxins in blood plasma. [Pg.113]

Caspase-l [EC 3.4.22.36] (also known as interleukin-lj8 converting enzyme and interleukin-1/3 convertase precursor) is a member of the peptidase family C14. It catalyzes the hydrolysis of the Asp -Ala and Asp -Gly in the precursor protein, resulting in the release of interleukin-ljS. The enzyme will also hydrolyze the small peptide, Ac-TyrValAlaAsp—NHMEC. [Pg.114]

This lysosomal enzyme [EC 3.4.22.1], also known as cathepsin Bl, is a member of the peptidase family Cl. The catalyzed reaction is the hydrolysis of peptide binds with a broad specificity. The enzyme prefers the ArgArg—Xaa bond in small peptide substrates (thus distinguishing this enzyme from cathepsin L). The enzyme also exhibits a peptidyl-dipeptidase activity, releasing C-terminal dipeptides from larger polypeptides. [Pg.121]

This lysosomal endopeptidase [EC 3.4.23.5] is similar to pepsin A, except that the specificity is narrower and will not hydrolyze the Gln" —His peptide bond in the B chain of insulin. The enzyme is a member of the peptidase family Al. [Pg.121]

This endopeptidase [EC 3.4.21.20], a member of the peptidase family SI, has substrate specificity similar to that of chymotrypsin C. [Pg.122]

This mammalian lysosomal endopeptidase [EC 3.4.22.16] is also known as aleurain, cathepsin B3, cathepsin BA, and benzoylarginineinaphthylamide hydrolase. A member of the peptidase family Cl, the enzyme also acts with an aminopeptidase activity, preferring Arg— Xaa peptide bonds. [Pg.122]

This peptidase family Cl enzyme [EC 3.4.22.15] is an lysosomal endopeptidase with specificity akin to papain. Cathepsin L displays a higher activity toward protein substrates than does cathepsin B. [Pg.122]

This enzyme [EC 3.4.22.6], also known as papaya proteinase II, is a member of the peptidase family Cl. It is the major endopeptidase of papaya (Carica papaya) latex. It has a specificity similar to that of papain. In addition, there are a number of chromatographic forms of the enzyme. [Pg.150]

This enzyme [EC 3.4.21.1], also known as a-chymotryp-sin, is an endopeptidase belonging to the peptidase family SI. It catalyzes the hydrolysis of peptide bonds with the preference for Tyr-Xaa, Trp-Xaa, Phe-Xaa, and Leu-Xaa. [Pg.150]

There are many dipeptidases [EC 3.4.13.x]. Cytosol nonspecific dipeptidase [EC 3.4.13.18] (also referred to as peptidase A, glycylglycine dipeptidase, glycylleucine dipeptidase, and A -)3-alanylarginine dipeptidase) catalyzes the hydrolysis of dipeptides. Membrane dipeptidase [EC 3.1.13.19] (also known as microsomal dipeptidase, renal dipeptidase, and dehydropeptidase I) is a zinc-dependent enzyme (a member of the peptidase family M19) that also catalyzes the hydrolysis of dipeptides. [Pg.204]

This enzyme [EC 3.4.14.1], also called cathepsin C and cathepsin J, catalyzes the hydrolysis of a peptide bond resulting in the release of an N-terminal dipeptide, XaaXbb-Xcc, except when Xaa is an arginyl or a lysyl residue, or Xbb or Xcc is a prolyl residue. This enzyme, a member of the peptidase family Cl, is a CF-dependent lysosomal cysteine-type peptidase. [Pg.204]

This calcium-activated enzyme [EC 3.4.21.75] catalyzes the hydrolysis of peptide bonds in protein precursors that results in the release of mature proteins from their proproteins by hydrolysis of ArgXaaYaaArg—Zaa bonds, where Xaa can be any amino acid and Yaa is an arginyl or a lysyl residue. Albumin, complement component C3, and von Willebrand factor are thus released from their respective precursors. Furin is a member of the peptidase family S8. [Pg.303]

Glutamyl endopeptidase [EC 3.4.21.19] (also known as staphylococcal serine proteinase, V8 proteinase, protease V8, and endoproteinase Glu-C), a member of the peptidase family S2B, catalyzes the hydrolysis of Asp-Xaa and Glu-Xaa peptide bonds. In appropriate buffers, the specificity of the bond cleavage is restricted to Glu-Xaa. Peptide bonds involving bulky side chains of hydrophobic aminoacyl residues are hydrolyzed at a lower rate. [Pg.316]

Glutamyl endopeptidase 11 [EC 3.4.21.82], also known as glutamic acid-specific protease, catalyzes the hydrolysis of peptide bonds, exhibiting a preference for Glu-Xaa bonds much more than for Asp-Xaa bonds. The enzyme has a preference for prolyl or leucyl residues at P2 and phenylalanyl at P3. Hydrolysis of Glu-Pro and Asp-Pro bonds is slow. This endopeptidase is a member of the peptidase family S2A. [Pg.316]

These zinc-dependent endopeptidases (meprin A [EC 3.4.24.18] and meprin B [EC 3.4.24.63] ) are members of the peptidase family M12A. They catalyze the hydrolysis of peptide bonds in proteins and peptide substrates. Meprin A, a membrane-bound enzyme that has been isolated from mouse and rat kidney and intestinal brush borders as well as salivary ducts, acts preferentially on carboxyl side of hydrophobic amino acyl residues. Meprin A and B are insensitive to inhibition by phosphora-midon and thiorphan. [Pg.452]

This endopeptidase [EC 3.4.22.2], a member of the Cl peptidase family hydrolyzes peptide bonds in proteins, exhibiting a broad specificity for those bonds. There is a preference for an amino acyl residue bearing a large hydrophobic side chain at the P2 position and the enzyme does not accept a valyl residue at Pi. [Pg.536]

Plasmin [EC 3.4.21.7], also known as fibrinase and fibri-nolysin, is a peptidase (a member of the peptidase family SI) that exhibits preferential cleavage at Lys—Xaa > Arg-Xaa (there is actually greater selectivity than displayed by trypsin). Plasmin converts fibrin into soluble products. It is formed from plasminogen by proteolysis, resulting in multiple forms of the active plasmin. [Pg.564]

This manganese-dependent enzyme [EC 3.4.13.9] (also known as Xaa—Pro dipeptidase, X—Pro dipeptidase, imidodipeptidase, prolidase, peptidase D, and y-pepti-dase) catalyzes the hydrolysis of Xaa—Pro dipeptides (except for prolylproline). The dipeptidase also acts on aminoacylhydroxyproline derivatives. This cytosolic enzyme, a member of the peptidase family M24A, is found in most animal tissues. [Pg.575]

This enzyme [EC 3.4.19.3], a member of the C15 peptidase family, is also known as pyroglutamyl-peptidase 1,5-oxoprolyl-peptidase, pyrrolidone-carboxylate peptidase, and pyroglutamyl aminopeptidase. This hydrolase catalyzes the conversion of a 5-oxoprolyl-peptide to produce 5-oxoproline and a peptide. The enzyme will not act on the 5-oxoprolyl peptide if the adjacent amino acid is l-proline. Enzyme activity is inhibited by thiol-blocking reagents. [Pg.590]

This enzyme [EC 3.4.23.15], also known as angiotensinforming enzyme and angiotensinogenase, catalyzes the hydrolysis of the Leu—Leu bond in angiotensinogen to generate angiotensin I. It belongs to the peptidase family Al. [Pg.616]

This enzyme [EC 3.4.24.27], also known as Bacillus ther-moproteolyticus neutral proteinase, is a thermostable extracellular metalloendopeptidase containing zinc and four calcium ions. A member of the peptidase family M4, this enzyme catalyzes the hydrolysis of peptide bonds with a preference for Xaa—Leu > Xaa—Phe. [Pg.675]

Thrombin [EC 3.4.21.5], also known as fibrinogenase, catalyzes the hydrolysis of peptide bonds, exhibiting preferential cleavage for the Arg—Gly peptide bond. The enzyme, a member of the peptidase family SI, activates fibrinogen to fibrin and releases fibrinopeptide A and B. Thrombin, formed from prothrombin, is more selective in peptide hydrolysis than trypsin or plasmin. [Pg.676]


See other pages where Peptidases families is mentioned: [Pg.33]    [Pg.70]    [Pg.150]    [Pg.150]    [Pg.156]    [Pg.204]    [Pg.541]    [Pg.619]   
See also in sourсe #XX -- [ Pg.809 , Pg.811 ]




SEARCH



Peptidases

© 2024 chempedia.info