Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PAMAM metal-dendrimer

Optical Effects Manifested by PAMAM Dendrimer Metal Nano-Composites... [Pg.515]

Dendrimers bearing certain fluorescent molecules attached on their periphery have been shown to be environmentally sensitive probes for the presence of certain metal ions or to changes in pH (Balzani et al., 2000 Paola et al., 2005). In addition, PAMAM dendrimers modified with the relatively hydrophobic dye Oregon Green 488 were shown to be a more effective transfection agent for anti-sense oligonucleotides than the dendrimer alone-plus the complex could be tracked within the cell due to the fluorescence of the dye (Yoo and Juliano, 2000). [Pg.381]

The use of dendrimers as supports to anchor transition metal catalysts has attracted considerable attention over the past decades [48] (see also Chapter 4 of this book). Several groups studied the use of dendrimers immobilised on insoluble supports [49], and this type of material meet the requirements for catalysis in interphases. Alper reported the use of diphosphine functionalised polyamidoamine (PAMAM) dendrimers... [Pg.56]

The surface morphologies of PAMAM dendrimers have been studied extensively by Turro and co-workers [16-23]. As shown in Scheme 4, one approach was to study the adsorption of organic dye molecules and metal complexes on the dendrimer surface by UY-Vis and fluorescence spectroscopy another approach took advantages of electron transfer processes between two adsorbed species on a single dendrimer surface or between the adsorbed species on a dendrimer surface and other species in aqueous solution. [Pg.318]

In contrast to Bosman et al., who only found metal complexation in the periphery of polypropylene imine) dendrimers, Tomalia and co-workers reported on the incorporation of copper ions into the interior of PAMAM dendrimers judging from EPR and UV/Vis studies [220, 221]. Metal binding in the dendrimer interior has also been observed for dendrimers carrying multiple ligands for metal complexation within their framework such as crown-ethers [222, 223] (Cs(I)-complexes), piperazine [224] (Pd(II)- and Cu(II)-complexes) or triazocyclononane [225] (Cu(II)- and Ni(II)-complexes). In most cases addition of the metal-salt to the dendrimer led to the formation of 1 1 complexes. [Pg.415]

Recently, two new approaches for the preparation of metallodendritic catalysts were described. The first one involves the use of PAMAM dendrimers [11] as both template and stabilizer of metal ions. The cavities of these dendrimers can serve as host type nano-reactors for metal ion guests. This strategy is referred to as reactive encapsulation . The concept was first elegantly demonstrated by... [Pg.491]

However, for the dendrimer nanocomposite metallic systems this change in shape was not observed. Again, due to the high stability to intense laser pulses, the anisotropy value of the gold dendrimer nanocomposite, which can be viewed as a measure of the symmetry of the particle, did not change after several repeated cycles of measurements. It is possible that the initial optical pumping of the electron-phonon modes of the metal particles is partially absorbed by the encapsulating PAMAM dendrimer. [Pg.539]

This chapter describes composite materials composed of dendrimers and metals or semiconductors. Three types of dendrimer/metal-ion composites are discussed dendrimers containing structural metal ions, nonstructimal exterior metal ions, and nonstructiu al interior metal ions. Nonstructural interior metal ions can be reduced to yield dendrimer-encapsulated metal and semiconductor nanoparticles. These materials are the principal focus of this chapter. Poly(amidoamine) (PAMAM) and poly(propylene imine) dendrimers, which are the two commercially available families of dendrimers, are in many cases monodisperse in size. Accordingly, they have a generation-dependent munber of interior tertiary amines. These are able to complex a range of metal ions including Pd +, and Pt +. The maximmn munber... [Pg.81]

PAMAM dendrimers are large (G4 is 4.5 nm in diameter) and have a hydrophilic interior and exterior accordingly, they are soluble in many convenient solvents (water, alcohols, and some polar organic solvents). Importantly, the interior void spaces are large enough to accommodate nanoscopic guests, such as metal clusters, and are sufficiently monodispersed in size so as to ensure fairly uniform particle size and shape. As we will show later, the space between the ter-... [Pg.87]

Amine-terminated, full-generation PAMAM and PPI dendrimers, as well as carboxylate-terminated half-generation PAMAM dendrimers, can directly bind metal ions to their surfaces via coordination to the amine or acid functionality. A partial hst of metal ions that have been bound to these dendrimers in this way includes Na+, K+, Cs+, Rb+, Fe +, Fe +, Gd +, Cu+, Cu +, Ag+, Mn +, Pd, Zn, Co, Rh+,Ru +,andPt + [18,19,27,36,54,82-96]. Tuxro et al.have also shown that the metal ion complexes, such as tris(2,2 -bipyridine)ruthenium (Rulbpylj), can be attached to PAMAM dendrimer surfaces by electrostatic attraction [97]. A wide variety of other famihes of dendrimers have also been prepared that bind metal ions to their periphery. These have recently been reviewed [3]. Such surface-bound metal ions can be used to probe dendrimer structure using optical spectroscopy, mass spectrometry, and electron paramagnetic resonance (EPR) [86-88,90,97-99]. [Pg.92]

Importantly, unmodified PAMAM and PPI dendrimers have functional groups within their interior as well as on their exterior. Specifically, PAMAM dendrimer interiors contain both tertiary and secondary (amide) amines, and both of these are ligands for many metals [19,82,83,87,89]. For example, Turro et al. [87, 89] investigated the binding of Cu + ions to integer and half-integer PAMAM dendrimers. Their EPR results indicated that Cu + can bind to both exterior acid and amine groups, as well as to interior tertiary amines and amides. Similarly, PPI dendrimers have interior tertiary amines and are also able to bind metal ions, such as Cu +, Zn +, and Ni + within their interior [90,100]. [Pg.93]

Intradendrimer Complexes Between PAMAM Dendrimers and Metal Ions... [Pg.95]

Indeed, recent results from our laboratory indicate that dendrimer-encapsulated CdS QDs can be prepared by either of two methods [192]. The first approach is analogous to the methodology described earlier for preparing dendrimer-encapsulated metal particles. First, Cd and S salts are added to an aqueous or methanolic PAMAM dendrimer solution. This yields a mixture of intradendrimer (templated) and interdendrimer particles. The smaller, dendrimer-encapsulated nanoparticles may then be separated via size-selective photo etching [193], dendrimer modification and extraction into a nonpolar phase [19], or by washing with solvent in which the dendrimer-encapsulated particles are preferentially soluble. An alternative, higher-yield method relies on sequential addition of very small aliquots of Cd + and S " to alcoholic dendrimer solutions. [Pg.128]

Zhao et al (70) developed a method for the synthesis of dendrimer-encapsulated metal nanoparticles based on sorbing metal ions into (modified) PAMAM dendrimers followed by a reduction. Dendrimers encapsulating copper, palladium, and platinum nanoparticles have been prepared. Hydroxyl-terminated PAMAM dendrimers were used to prepare encapsulated palladium (PAMAM generations 4, 6, and 8) and platinum (PAMAM generations 4 and 6) nanoparticles. The dendrimer-encapsulated palladium and platinum nanocomposites catalyzed the hydrogenation reaction of allyl alcohol and N-isopropyl acrylamide in water 71). [Pg.130]

We are developing a new method for preparing heterogeneous catalysts utilizing polyamidoamine (PAMAM) dendrimers to template metal nanoparticles. (1) In this study, generation 4 PAMAM dendrimers were used to template Pt or Au Dendrimer Encapsulated Nanoparticles (DENs) in solution. For Au nanoparticles prepared by this route, particle sizes and distributions are particularly small and narrow, with average sizes of 1.3 + 0.3 nm.(2) For Pt DENs, particle sizes were around 2 nm.(3) The DENs were deposited onto silica and Degussa P-25 titania, and conditions for dendrimer removal were examined. [Pg.315]

Abstract We review the preparation, characterization, and properties of dendrimer-templated bimetallic nanoparticles. Polyamidoamine (PAMAM) dendrimers can be used to template and stabilize a wide variety of mono- and bimetallic nanoparticles. Depending on the specific requirements of the metal system, a variety of synthetic methodologies are available for preparing nanoparticles with diameters on the order of 1-3 nm with narrow particle size distributions. The resulting dendrimer-encapsulated nanoparticles, or DENs, have been physically characterized with electron microscopy techniques, as well as UV-visible and X-ray photoelectron spectroscopies. [Pg.97]


See other pages where PAMAM metal-dendrimer is mentioned: [Pg.515]    [Pg.515]    [Pg.144]    [Pg.243]    [Pg.244]    [Pg.249]    [Pg.850]    [Pg.336]    [Pg.376]    [Pg.93]    [Pg.246]    [Pg.493]    [Pg.518]    [Pg.518]    [Pg.520]    [Pg.521]    [Pg.521]    [Pg.522]    [Pg.524]    [Pg.524]    [Pg.535]    [Pg.540]    [Pg.94]    [Pg.96]    [Pg.110]    [Pg.81]    [Pg.89]    [Pg.93]    [Pg.94]    [Pg.151]    [Pg.316]    [Pg.217]    [Pg.274]   


SEARCH



PAMAM dendrimer

PAMAM dendrimers

PAMAM metal-dendrimer nanocomposites

© 2024 chempedia.info