Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide in model systems

SEVERINI c and lerici c r (1995) Interaction between Maillard reaction and lipid oxidation in model systems during high temperature treatment , Ital J Food Sci, 1 (2) 189-96. [Pg.313]

Milk contains trace amounts of SOD which has been isolated and characterized it appears to be identical to the bovine erythrocyte enzyme. SOD inhibits lipid oxidation in model systems. The level of SOD in milk parallels that of XO (but at a lower level), suggesting that SOD may be excreted in milk in an attempt to offset the pro-oxidant effect of XO. However, the level of SOD in milk is probably insufficient to explain observed differences in the oxidative stability of milk. The possibility of using exogenous SOD to retard or inhibit lipid oxidation in dairy products has been considered. [Pg.250]

In particular, this chapter wiU stress the need to look beyond the classic radical chain reaction. Lipid oxidation mechanisms have been proposed based on kinetics, usually of oxygen consumption or appearance of specific products (e.g., LOOK) or carbonyls (e.g., malonaldehyde), assuming standard radical chain reaction sequences. However, when side reactions are ignored or reactions proceed by a pathway different from that being measured, erroneous conclusions can easily be drawn. The same argument holds for catalytic mechanisms, as will be shown in the discussion about metals. In the past, separation and analysis of products was laborious, but contemporary methods allow much more sensitive detection and identification of a broad mix of products. Thus, multiple pathways and reaction tracks need to be evaluated simultaneously to develop an accurate picture of lipid oxidation in model systems, foods, and biological tissues. [Pg.314]

Another approach to the simulation of the catalyst s microenvironment is its immobilization on a solid support, i.e., the formation of heterogeneous oxygenase systems. Immobilization of a metalloporphyrin on porous glass [80] or polyvinylpyrrolidone [81] markedly increases the selectivity of alcohol formation. Immobilization of an iron-porphyrin complex on zeolites [82], Si02 [83] and especially on graphite, strongly increases the steric effects, which are observed in hexane oxidation in model systems with active oxygen species [84]. The effect of the matrix is not confined to the increase in the steric hindrances around the active oxidant. It can also be accompanied by a sieve effect, which is well-known for zeolites and accounts for the differences in the substrate specificity. [Pg.498]

Mahoney, S.R. and Graf, E. (1986) Role of alpha-tocopherol, ascorbic acid, citric acid and EDTA as oxidants in model systems. J. Food Sci. 51, 1293-1296. [Pg.191]

Addresses of suppliers of catalyst pastes included in Table B.l are presented below. Other companies (e.g. Johnson-Matthey) may also supply similar products. The suitability of these products for preparing catalyst films for electrochemical promotion studies should be tested on the basis of the requirements already mentioned. A useful approach before proceeding with the study of new systems is to try to reproduce results of electrochemical promotion studies in model systems, such as ethylene oxidation on Pt, which has been thoroughly studied. It has to be pointed out that in general suppliers do not provide calcination procedures or the provided calcination procedures aim to the production of very dense and non-porous films not necessarily suitable for electrochemical promotion studies. [Pg.546]

Further work at EniTecnologies was conducted with Rhodococcus strains. Rhodococ-cus was selected for its metabolical versatility, easy availability in soils and water, and remarkable solvent tolerance. Its capabilities for catalyzing diverse transformation reactions of crude oils, such as sulfur removal, alkanes and aromatics oxidation and catabolism caught their attention. Hence, genetic tools for the engineering of Rhodococcus strains have been applied to improve its biotransformation performance and its tolerance to certain common contaminants of the crude oil, such as cadmium. The development of active biomolecules led to the isolation and characterization of plasmid vectors and promoters. Strains have been constructed in which the careful over-expression of selected components of the desulfurization pathway leads to the enhancement of the sulfur removal activity in model systems. Rhodococcus, Gordona, and Nocardia were transformed in this way trying to improve their catalytic performance in BDS. In a... [Pg.283]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]

This reaction, while still not an elementary reaction, more closely describes how the oxidation proceeds on a molecular level. Even where Reaction 31.4 operates, however, our model may still represent the overall process occurring in nature, since 02 is needed to produce the Fe+++ that drives the reaction forward and is, therefore, the ultimate oxidant in the system. [Pg.453]

Another SIMS study on model systems concerns molybdenum sulfide catalysts. The removal of sulfur from heavy oil fractions is carried out over molybdenum catalysts promoted with cobalt or nickel, in processes called hydrodesulfurization (HDS) [17]. Catalysts are prepared in the oxidic state but have to be sulfided in a mixture of H2S and H2 in order to be active. SIMS sensitively reveals the conversion of Mo03 into MoSi, in model systems of MoCf supported on a thin layer of Si02 [21]. [Pg.107]

From the above it is clear that DMPO can undergo the addition-oxidation mechanism with water as the nucleophile, provided a suitable oxidant is present. With a primary alcohol competing, the O-connected alkoxy spin adduct is formed in addition to HO-DMPO". On the other hand, with a hydroxyl radical source a competing alcohol will undergo hydrogen abstraction by HO" and form an a-hydroxyalkyl radical which forms a C-connected spin adduct. This criterion clearly can distinguish between the two mechanisms at least in model systems (for recent examples, see Reszka and Chignell, 1995 Janzen et al., 1995 Thomas et al., 1996). [Pg.135]

RP-HPLC methods have been frequently applied for the investigation of various chemical, biochemical and biophysical processes in in vitro model systems. Thus, the separation of new compounds achieved by enzymatic oxidation of phloridzin was carried out by semi-preparative RP-HPLC. Phloridzin was incubated with a polyphenol oxidase prepared from apple pulp for 6h at 30°C under air agitation. After incubation the suspension was filtered, stabilized by NaF and injected into the RP-HPLC column using diluted acetic acid-ACN gradient. The new compounds were isolated and identified by NMR and MA techniques. The proposed mechanism of the formation of new phloridzin derivatives 3 and 4 is shown in Fig. 2.159. The results illustrate that RP-HPLC can be successfully used for the study of enzymatic processes in model systems [331],... [Pg.341]

The yield of HAs in food systems is affected by the concentration of substrates, enhancers and inhibitors, duration and temperature of heating, water activity, and pH. Some HAs are formed in mixtures of substrates heated for several weeks at relatively low temperature, about 37 to 60°C at 150 to 200°C the rate of reaction is much higher. However, in model systems prolonged heating may also bring about a decrease of the concentration of some HAs. Low water activity in the surface layers of the heated products favors the formation of HAs. In presence of lipids, Fe, and Fe, the rate of reaction increases, probably due to oxidation and generation of radicals (Jagerstad et ah, 2000). [Pg.295]

Kuo, R.J. Matijevic, E. (1980) Particle adhesion and removal in model systems. III. Monodisperse ferric oxide on steel. J. Colloid Interface Sci. 78 407-421 Kuo, S. Jellum, E.J. (1994) The effect of soil phosphorus buffering capacity on phosphorus extraction by iron oxide-coated paper strips in some acid soils. Soil Sci. 158 124-131... [Pg.598]

In short, the same types of aerosol organic products have been identified both in model systems and in polluted urban ambient air and can generally be rationalized based on the oxidation of known constituents of air. The measured yields of organics in the particles can depend on the amount of particle phase available for uptake of the organic if it is semivolatile and partitions between the gas and condensed phases. This partitioning, and its dependence on the amount of condensed phase available, may be at least in part responsible for discrepancies in the yields of secondary organic aerosol reported in a number of studies. [Pg.406]

Peroxidases are haem proteins that are activated from the ferric state to one-electron oxidants by H202. They play a significant role in the generation of radicals from xenobiotics. The compound I state contains one oxidising equivalent as an oxoferryl-haem entity and the second as a porphyrin -radical cation. Upon the oxidation of a substrate the porphyrin radical is repaired, giving the compound II. Reduction of the oxoferryl haem back to the ferric state by a second substrate molecule completes the enzyme cycle. In addition to the classical peroxidases, several other haem proteins display pseudo-peroxidase activity. The plant enzyme horseradish peroxidase (HRP) is often employed in model systems. [Pg.36]

Ritov, V.B., Menshikova, E.V, Goldman, R. Kagan, VE. (1996) Direct oxidation of polyunsaturated cA-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells. Toxicol. Lett., 87, 121-129... [Pg.766]

Tratnyek, P. G., J. Hoigne, J. Zeyer, and R. P. Schwarzenbach, QSAR analysis of oxidation and reduction rates of environmental organic pollutants in model systems , The Science of the Total Environment, 109/110, 327-341 (1991). [Pg.1249]

Various methods have been employed to measure the extent of autoxi-dation in lipids and lipid-containing food products. For obvious reasons, such methods should be capable of detecting the autoxidation process before the onset of off-flavor. Milk and its products, which develop characteristic off-flavors at low levels of oxidation, require procedures that are extremely sensitive to oxidation. Thus methods of measuring the decrease in unsaturation (iodine number) or the increase in diene conjugation as a result of the reaction do not lend themselves to quality control procedures, although they have been used successfully in determining the extent of autoxidation in model systems (Haase and Dunkley 1969A Pont and Holloway 1967). [Pg.241]

Haase and Dunkley (1969B) reported that although high concentrations of ascorbic acid in model systems of potassium linoleate were prooxidant, a decrease in the rate of oxidation was observed. Haase and Dunkley (1969C) further noted that certain concentrations of ascorbic acid and copper inhibited the formation of conjugated dienes, but not the oxidation of ascorbic acid, and caused a rapid loss of part of the conjugated dienes already present in the system. They theorized that certain combination concentrations of ascorbic acid and copper inhibit oxidation by the formation of free radical inhibitors which terminate free- radical chain reactions, and that the inhibitors are complexes that include the free radicals. [Pg.250]

Oxidative phenolic coupling.1 The vancomycin antibiotics are polypeptides with bridging diphenyl ether groups. Evans et al. have shown in model systems such as 1 that cyclization to o-halophenolic peptides (2) can be accomplished by oxidation with thallium(III) nitrate in THF-methanol or CH2Cl2-methanol followed by CrCl2 reduction of a para-quinol intermediate (a). In three cases the yield of cyclic products was 40-48%. [Pg.326]


See other pages where Oxide in model systems is mentioned: [Pg.248]    [Pg.652]    [Pg.180]    [Pg.248]    [Pg.652]    [Pg.180]    [Pg.189]    [Pg.320]    [Pg.333]    [Pg.176]    [Pg.46]    [Pg.229]    [Pg.114]    [Pg.417]    [Pg.24]    [Pg.183]    [Pg.963]    [Pg.557]    [Pg.268]    [Pg.963]    [Pg.41]    [Pg.263]    [Pg.12]    [Pg.171]    [Pg.243]    [Pg.830]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Model Studies of Oxidative Addition in the Rh system

Oxidation in oil model systems

Oxidation model

Oxidation systems

Oxidative systems

Oxide model systems

Oxide systems

© 2024 chempedia.info